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We present the quantum critical theory of an interacting nodal Fermi liquid of quasirelativistic
pseudospin-3=2 fermions that have a noninteracting birefringent spectrum with two distinct Fermi
velocities. When such quasiparticles interact with gapless bosonic degrees of freedom that mediate either
the long-range Coulomb interaction or its short range component (responsible for spontaneous symmetry
breaking), in the deep infrared or quantum critical regime in two dimensions, the system is, respectively,
described by a marginal- or a non-Fermi liquid of relativistic spin-1=2 fermions (possessing a unique
velocity), and is always a marginal Fermi liquid in three dimensions. We consider a possible generalization
of these scenarios to fermions with an arbitrary half-odd-integer spin, and conjecture that critical spin-1=2
excitations represent a superuniversal description of the entire family of interacting quasirelativistic
fermions.
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Introduction.—All fermions in the standard model have
spin 1=2; however, higher spin particles, such as the
gravitino, a charge-neutral spin-3=2 fermion, have been
postulated in theories such as supergravity [1]. An impor-
tant recent advance in condensed matter physics is the
discovery of (quasi)-relativistic spin-1=2 fermions in gra-
phene [2], on the surface of topological insulators [3–5], in
Weyl materials [6], and in topological superconductors [7].
It is also conceivable to realize higher spin fermions as
emergent quasiparticles in various solid state systems in the
vicinity of band-touching points [8–20], which can be
either symmetry protected or correspond to a fixed point
description of a quantum phase transition between two
topologically distinct insulators.
Pseudo-spin-3=2 fermions [21] can be found in the close

proximity of linear or biquadratic touching of valence and
conduction bands [8]. We focus on the former situation
where the quasiparticles display a birefringent spectrum
with two distinct Fermi velocities and, therefore, manifestly
break Lorentz symmetry. Such fermions can be realized
from simple tight-binding models on a two-dimensional
generalized π-flux square lattice [9–11], honeycomb latti-
ces [12,13], shaken optical lattices [14,15], as well as in
three-dimensional strong spin-orbit coupled systems
[16,17], such as antiperovskites [18] and the CaAgBi
family of materials [19]. In the present Letter, we venture
into the largely unexplored territory [11,12,20] that encom-
passes the response of such peculiar gapless fermionic
excitations and their stability in the presence of electronic
interactions.

Now, we provide a brief summary of our main
findings. Irrespective of their materials origin and dimen-
sionality of the system, we show that the optical
conductivity of noninteracting spin-3=2 fermions at zero
temperature is identical to that of pseudorelativistic spin-
1=2 fermions. When spin-3=2 fermions interact with
massless bosonic degrees of freedom (d.o.f.), which
mediate either the long-range Coulomb interaction or
its short-range component, in the deep infrared or
quantum critical regime, a marginal Fermi liquid of
effective spin-1=2 fermions emerges, featuring logarith-
mic corrections to its Fermi velocity in three dimensions.
By contrast, in two spatial dimensions, the system
respectively hosts a marginal Fermi liquid or a non-
Fermi liquid of relativistic spin-1=2 fermions. At the non-
Fermi liquid fixed point, the residue of the quasiparticle
pole vanishes in a power-law fashion, and the ordered
phase for a strong repulsive interaction represents a
quadrupolar charge- or spin-density wave, while it is a
spin-singlet s-wave paired state in the case of a strong
attractive interaction. Finally, based on the form of the
Hamiltonian for arbitrary half-odd-integer spin relativistic
fermions, we conjecture that the corresponding nodal
liquid is ultimately described in terms of critical spin-1=2
fermions, which promotes these excitations as the super-
universal description of the entire family of interacting
quasirelativistic fermions.
Hamiltonian.—The low-energy Hamiltonian describing

a collection of quasirelativistic pseudospin-3=2 fermions is
given by η̃ ⊗ H3=2ðkÞ, where
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H3=2ðkÞ ¼ v
Xd
j¼1

½Γj0kj þ βΓ0jkj�; ð1Þ

in dimensions d ¼ 2 and d ¼ 3 with η̃ defined below. The
four component Hermitian matrices are Γμν ¼ σμ ⊗ σν,
where fσμg, μ ¼ 0, 1, 2, 3 are the standard two dimensional
Pauli matrices, andk ¼ ðk1;…; kdÞ. The isotropic spectrum
ofH3=2ðkÞ is given by�vð1� βÞjkj ¼ �v�jkj, displaying
birefringence with two effective Fermi velocities
v� ¼ vð1� βÞ, where β is the birefringence parameter.
Notice the spectra of H̃3=2ðkÞ ¼ vðS · kÞ, namely,
�vð3; 1Þjkj=2, where S are spin-3=2 matrices and are
recovered for β ¼ 1=2. For β ¼ 0we recover two decoupled
copies of quasirelativistic pseudospin-1=2 fermions, similar
to the situation in monolayer graphene [2] or the regular
π-flux square lattice [22]. For β ¼ 1, the spectrum accom-
modates two flat bands and a Dirac cone, as found for the
Lieb lattice [23]. TheHamiltonian in Eq. (1) permits themost
general birefringent structure. Here, we restrict ourselves to
jβj < 1. In d ¼ 2, the Hamiltonian in Eq. (1) describes low-
energy excitations in a generalized π-flux square lattice, with
η̃≡ η0 [9–11], while Pauli matrices fημg act on the spin
indices. In contrast, in three dimensions, H3=2ðkÞ could
describe spin-3=2 Weyl excitations in a system with strong
spin-orbit coupling, with η̃≡ η3, and the fημg operating on
valley indices. Independent of these microscopic details, the
minimal representation of quasirelativistic spin-3=2 fermions
is four dimensional, in contrast to spin-1=2 fermions for
which the minimal representation is two dimensional.
Optical conductivity.—First, we focus on the response of

spin-3=2 fermions to an external electromagnetic field and
compute the optical conductivity at temperature T ¼ 0. The
current operator in the lth direction is jl ¼ vðΓ0l þ βΓl0Þ,
where l ¼ 1;…; d. To extract the optical conductivity in
a d-dimensional noninteracting system, we compute the
polarization bubble [24]

ΠðdÞðiΩÞ ¼ −
e20
ℏd

Xd
l¼1

½ΠllðiΩÞ − ΠllðiΩ ¼ 0Þ�; ð2Þ

where e0 is the external electronic test charge and

ΠllðiΩÞ ¼ Tr
Z

ddk
ð2πÞd

Z
∞

−∞

dω
2π

jlGkðiωþ iΩÞjlGkðiωÞ:

ð3Þ
Here, GkðiωÞ is the fermionic Greens function in terms of
the Matsubara frequency (iω). Then, we perform analytic
continuation to real frequencies (ω) via iΩ → ωþ iδ and
use the Kubo formula to obtain the optical conductivity

σð2Þll ðωÞ ¼
e20
h

πNf

4
; σð3Þll ðωÞ ¼

e20
h

Nfω

6v
; ð4Þ

respectively, in d ¼ 2 and 3, where Nf is the number of
four-component spin-3=2 fermion species. Note that the
optical conductivity in a nodal Fermi liquid of spin-3=2
fermions with Nf flavors is identical to that of 2Nf
component spin-1=2 quasirelativistic Dirac or Weyl fer-
mions [2,6], since σðdÞll ðωÞ does not depend on β. Therefore,
the above example already indicates that the birefringence
parameter (β) may not be important for the physical
properties of this state at T ¼ 0, in the absence of an
infrared cutoff. Now, we include the interactions to study
their effects on spin-3=2 fermions, and show that their main
role is to make the birefringence parameter irrelevant and
restore Lorentz symmetry.
Long-range Coulomb interaction.—First, we focus on

the long-range tail of the density-density Coulomb inter-
action, and neglect the retarded current-current interaction,
since, in a condensed matter system, v� ≪ c (the speed of
light). The imaginary-time (τ) action capturing the instan-
taneous Coulomb interaction is

SC ¼
Z

dτddrddr0ρðτ; rÞVðr − r0Þρðτ; r0Þ; ð5Þ

where Vðr − r0Þ ¼ e2=jr − r0j, and ρðτ; rÞ is the fermionic
density. In reciprocal space, the Coulomb interaction
VðkÞ ∼ e2=jkjd−1 is an analytic (nonanalytic) function of
momentum in three (two) dimensions. Therefore, only in
d ¼ 3 is charge dynamically screened by fermions, since
the fermion bubble can only yield corrections that are
analytic in momentum [25–31]. From the leading order
fermionic and bosonic (soft gauge field mediating
Coulomb interaction) self-energy corrections, we arrive
at the following renormalization group flow equations [24]:

dv
dl

¼ αv
Cd

≡ e2

Cd
;

dβ
dl

¼ −
αβ

Cd
;

dα
dl

¼ −ð1þ Nfδd;3Þ
α2

Cd
; ð6Þ

where α ¼ e2=v is the fine structure constant, C2 ¼ 8π,
C3 ¼ 6π2, and l≡ lnðΛ0=ΛÞ > 1 is the logarithm of the

(a) (b)

FIG. 1. Renormalization group (RG) flow of the mean Fermi
velocity (v), birefringence parameter (β), and fine structure
constant (α) for quasirelativistic pseudospin-3=2 fermions in
the presence of an instantaneous long-range Coulomb interaction
in (a) d ¼ 2 and (b) d ¼ 3. The bare values of the parameters are
chosen to be v0 ¼ 0.1, β0 ¼ 0.5, α0 ¼ 1.
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running renormalization group scale, with Λ0 the ultra-
violet cutoff, while Λ is the running scale. To leading order,
the birefringent part of H3=2ðkÞ remains marginal in the
presence of Coulomb interactions, namely dðβvÞ=dl ¼ 0,
while the mean Fermi velocity (v) receives a β-independent
logarithmic correction making v a marginally relevant
parameter.
Thus, in a two or three dimensional interacting

quasirelativistic liquid of spin-3=2 fermions, the mean
Fermi velocity (v) increases logarithmically, while the
birefringent parameter (β) decreases, also logarithmically,
but the parameter βv remains marginal. Ultimately, in the
deep infrared regime, we effectively recover two decoupled
copies of relativistic spin-1=2 fermions, since vþ − v− ≪ v
yielding βv ≪ v. We dub such a state an effective marginal
Fermi liquid of spin-1=2 fermions. As a result, the fine
structure constant (α) also decreases logarithmically slowly.
These scenarios for d ¼ 2 and d ¼ 3, respectively, are
shown in Figs. 1(a) and 1(b).
Because of our neglect of the retarded part of the long

range interaction, the enhancement of the mean Fermi
velocity (v) is unbounded. However, as v increases, the
current-current interaction (originally suppressed by
v�=c ≪ 1) can no longer be neglected, and ultimately,
the flow of the Fermi velocity stops at the speed of light (c),
leading to the restoration of genuine Lorentz symmetry
[29–31]. Although the parameter βv is initially marginal,
based on the results with retarded short-range interaction
mediated by a bosonic order-parameter field, which we
discuss below, we suspect that, ultimately, βv [originally a
marginal or scale (l) invariant quantity in the presence of
only instantaneous Coulomb interaction] becomes irrel-
evant with the inclusion of retarded long-range current-
current interaction, implying βv → 0 as l → ∞ (see Fig. 2
for qualitative comparison). Therefore, at the lowest energy
scales, once the full electromagnetic interaction is
accounted for, only spin-1=2 fermions survive. However,
the length scale (l�) at which the current-current interaction
becomes important is extremely large (l� ≫ 1), and
logarithmically slow growth of the Fermi velocity makes
it impossible to access such a regime in any real system. We
leave this issue of definite fundamental importance but pure
academic interest for future investigation. In d ¼ 3, besides
the Lorentz symmetric fixed point, it is also conceivable to
find an Oh (cubic) symmetric interacting fixed point in a
crystalline environment. However, the Lorentz symmetric
fixed point has a larger basin of attraction [32].
Proximity to a Mott transition.—Finally, we address the

quantum critical description of a collection of spin-3=2
fermions, residing near a Mott transition, driven into an
insulating phase by the short range parts of the Coulomb
interaction (such as those appearing in an extended
Hubbard model) [11,20]. The density of states vanishes
as ϱðEÞ ∼ jEj; hence, any ordering takes place at a finite
coupling through a quantum phase transition. For spinless

fermions in d ¼ 2, there exists one matrix, namely, Γ33, that
anticommutes with H3=2ðkÞ. Thus, in an ordered phase
with hΨ†η0 ⊗ Γ33Ψi ≠ 0, the quasiparticle spectrum is
fully and uniformly gapped. Hence, at T ¼ 0, the propen-
sity toward such an ordering is energetically favored since
it maximally lowers the free energy. Such an ordered
phase represents a quadrupolar charge-density wave, since
Γ33¼ð2S2z−S2x−S2yÞ=3, when Sz ¼ diagð3; 1;−1;−3Þ=2.
The inclusion of spin d.o.f. leads to a competing order,
also representing a massive ordered phase, where hΨ†η⃗ ⊗
Γ33Ψi ≠ 0 describes a quadrupolar spin-density wave,
with η⃗ ¼ ðη1; η2; η3Þ. Both spin- and charge-density-wave
phases break the discrete particle-hole symmetry generated
by Γ33, as fH3=2ðkÞ;Γ33g ¼ 0, while the former one also
breaks the continuous SUð2Þ spin-rotational symmetry
generated by η⃗ ⊗ Γ00; hence, the ordered phase is accom-
panied by two Goldstone modes. These two phases can be
realized for sufficiently strong on-site [20] and nearest-
neighbor [11] repulsion, respectively, in a π-flux square
lattice. By contrast, in d ¼ 3 there is no matrix that
anticommutes with H3=2ðkÞ and single-flavored spin-3=2
Weyl fermions cannot be gapped out. Nevertheless, if we
account for valley d.o.f., then spin-3=2 Weyl fermions can
be gapped out by spontaneously breaking translational
symmetry (generated by η3 ⊗ Γ00), and the ordered
phase is characterized by hΨ†η⃗⊥ ⊗ Γ00Ψi ≠ 0, with η⃗⊥ ¼
ðη1; η2Þ. The same order parameter can represent a spin-
singlet s-wave pairing for spin-3=2 fermions in d ¼ 2 (with
an appropriate redefinition of the spinor basis). However,
the fate of an emergent Lorentz symmetry close to a Mott
transition for two or three-dimensional linearly dispersing
spin-3=2 fermions is insensitive to these details.
The imaginary time action describing such a quantum

phase transition is given by S ¼ R
dτddrðLf þ LY þ LbÞ,

where Lf describes the dynamics of gapless spin-3=2
fermionic excitations (represented by a spinor field Ψ)
with

Lf ¼ Ψ†½∂τ þ η̃ ⊗ H3=2ðk → −i∇Þ�Ψ; ð7Þ
where η̃ ¼ η0 or η3. The coupling between gapless bosonic
and fermionic d.o.f. is captured by

(a) (b)

FIG. 2. RG flow of two Fermi velocities (v and vβ), bosonic
(vB) velocity, and the birefringence parameter (β) in the presence
of Yukawa interaction (g2 ∼ ϵ) when (a) v0 > vB;0 and
(b) vB;0 > v0, for Nf ¼ Nb ¼ 1. For panel (a), we choose
v0 ¼ 0.9, vB;0 ¼ 0.2, β0 ¼ 0.7, v0β0 ¼ 0.63 and for
(b) v0 ¼ 0.4, vB;0 ¼ 0.95, β0 ¼ 0.35, v0β0 ¼ 0.14.
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LY ¼ g
XNb

α¼1

ΦαΨ†MαΨ; ð8Þ

where g is the Yukawa coupling, and Nb counts the number
of real components of the bosonic order-parameter field.
Therefore, Nb ¼ 1ð3Þ for a quadrupolar charge(spin)-
density wave in d ¼ 2, and Nb ¼ 2 for a translational
symmetry breaking charge-density wave in d ¼ 3 and
s-wave pairing in d ¼ 2. The Hermitian matrix Mα always
anticommutes with the noninteracting Hamiltonian η̃ ⊗
H3=2ðkÞ. The dynamics of the order-parameter bosonic
field is captured by an appropriate relativisticlikeΦ4 theory

Lb ¼
XNb

α¼1

�
−
1

2
Φα

�
∂2
τ þ v2B

Xd
j¼1

∂2
μ −m2

b

�
Φα þ

λ

4!
½Φ2

α�2
�
;

ð9Þ
where λ is the four-boson coupling, m2

b (the bosonic mass)
is the tuning parameter for the transition withm2

b ¼ 0 at the
quantum critical point, and vB is the characteristic velocity
of the bosonic field. Note that both Yukawa and four-boson
couplings are dimensionless in d ¼ 3. Therefore, the
critical behavior of the above field theory can be addressed
by performing a controlled ϵ expansion about three spatial
dimensions, with ϵ ¼ 3 − d [33]. From the leading order
self-energy corrections, we arrive at the following flow
equations for the two velocities (v and vB) and the
birefringence parameter (β) [24]:

dv
dl

¼ −2Nbvg2Aðv; vB; βÞ;
dβ
dl

¼ −2Nbβg2Sðv; vB; βÞ;
dvB
dl

¼ Nfg2vB
2v3ð1 − β2Þ

�
Cðv; vB; βÞ −

1

1 − β2

�
; ð10Þ

with Xðv; vB; βÞ≡ X for X ¼ A, S, C and where

A ¼ 2ðv − vBÞðvþ vBÞ2 þ 4v3β2

3vvB½ðvþ vBÞ2 − v2β2� ;

S ¼ 2½4vvBðvþ vBÞ þ v3B þ v3ð1 − β2Þ�
3vvB½ðvþ vBÞ2 − v2β2� ;

C ¼ v2

v2B
− β2

�
4

ð1 − β2Þ2 −
2v2

3v2B

�
: ð11Þ

Even though it is a daunting task to solve the
above coupled flow equations exactly, valuable insights
can be gained from their numerical solutions, displayed
in Fig. 2.
We note that, regardless of whether v > vB [Fig. 2(a)] or

vB > v [Fig. 2(b)] in the bare theory, the Fermi and bosonic
velocities approach each other, while the birefringent
parameter β flows to zero in the deep infrared regime,

but in this case, the parameter βv also flows, separately, to
zero. Hence, as the system approaches the boson-fermion
coupled Yukawa fixed point, it is effectively described by
two decoupled copies of spin-1=2 fermions and the Lorentz
symmetry gets restored since vþ and v− approach a
common velocity, v, vB → ṽ, and vβ → 0 (see brown
dashed line in Fig. 2) as l → ∞. The coupled flow
equations for the remaining two couplings in the β ¼ 0
and m2

b ¼ 0 hyperplane take the form

dg2

dl
¼ ϵg2 − a1g4;

dλ
dl

¼ ϵλ − 4Nfg2½λ − 6g2� − a3λ2

6
;

ð12Þ

and support only one quantum critical point located at

ðg2�; λ�Þ ¼
�
1;

3

a3
½a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 16Nfa3

q
�
�

ϵ

a1
; ð13Þ

where a1 ¼ 2Nf þ 4 − Nb, a2 ¼ 4 − 2Nf − Nb, and
a3 ¼ Nb þ 8. At this critical point, both fermionic and
bosonic excitations possess nontrivial anomalous dimen-
sions, given by ηf ¼ Nbg2�=2 and ηb ¼ 2Nfg2�, respectively,
responsible for the absence of sharp quasiparticles in its
vicinity. Specifically, the residue of the fermionic quasi-
particle pole vanishes as ZΨ ∼ ðmfÞηΨ=2, where mf is the
fermionic mass that vanishes following a universal ratio
ðmb=mfÞ2 ∼ λ�=g� as the critical point is approached from
the ordered side. Therefore, in d ¼ 2 or ϵ ¼ 1, ZΨ vanishes
in a power-law fashion, and the Yukawa critical point
accommodates a relativistic non-Fermi liquid, where gap-
less spin-1=2 fermionic and bosonic order-parameter exci-
tations are strongly coupled. By contrast, in d ¼ 3 or ϵ ¼ 0,
the critical phenomena at the transition are controlled by a
Gaussian fixed point, located at g2� ¼ λ� ¼ 0, which exhibit
mean-field behavior with logarithmic corrections due to the
fact that the field theory is at its upper critical dimension.
Consequently, the residue of the quasiparticle pole vanishes
only logarithmically, and the Yukawa fixed point hosts a
relativistic marginal Fermi liquid.
Discussion.—We demonstrate that, when quasirelativis-

tic spin-3=2 fermions interact with bosonic d.o.f. which
represent either a soft gauge field mediating the long-range
or an order-parameter field mediating a short-range
Coulomb interaction, in the deep infrared regime, the
system is described by either an effective marginal- or
non-Fermi liquid of relativistic spin-1=2 excitations [34].
One can envision generalizing our analysis to spin-s=2
quasirelativistic fermions with an arbitrary odd value of s.
For spin-s=2 Weyl fermions, the low-energy Hamiltonian
can be written as H̃s=2ðkÞ ¼ vðS · kÞ, where S are now
spin-s=2 matrices, and the quasiparticle spectrum has
ðsþ 1Þ=2 effective Fermi velocities, given by vs ¼ ð1=2;
3=2;…; s=2Þv. Even though we expect our conclusions to
hold for any value of s, specifically when sþ 1 ¼ 2N , with
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N an integer, a more general multirefringence can be
accommodated by the Hamiltonian

Hs=2ðkÞ ¼ v
Xd
j¼1

kj½Γj0���0 þ � � � þ βN−1Γ0���0j�; ð14Þ

similar to Eq. (1). Here, Γj0���0 ¼ σj ⊗ σ0 ⊗ � � � ⊗ σ0
and so on are (sþ 1)-dimensional Hermitian matrices.
Note that, for d ¼ 2, there exists a matrix, namely
Γ33���3 ¼ σ3 ⊗ � � � ⊗ σ3, that fully anticommutes with
Hs=2ðkÞ. Therefore, we believe that our proposed critical
descriptions for linearly dispersing spin-3=2 fermions are
also applicable for spin-s=2 fermions [35]. This would
imply that critical relativistic spin-1=2 fermions (describing
a marginal or non-Fermi liquid) stand as an extremely
sparse example of an emergent superuniversal description
of the entire family of interacting quasirelativistic spin-s=2
fermions in two and three dimensions. This conjectured
property of relativistic fermions with a half-odd-integer
spin could be demonstrated numerically [20] and, possibly,
in experiments. Finally, we note that the present discussion
might have relevance for the observation that all fermions
in the standard model are described in terms of the spin-1=2
representation, and this feature could be envisioned as an
example of an emergent phenomenon, analogous to the
restoration of Lorentz symmetry [36].
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