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Valley polarized topological kink states, existing broadly in the domain wall of hexagonal lattice
systems, are identified in experiments. Unfortunately, only very limited physical properties are given.
Using an Aharanov-Bohm interferometer composed of domain walls in graphene systems, we study the
periodical modulation of a pure valley current in a large range by tuning the magnetic field or the Fermi
level. For a monolayer graphene device, there exists one topological kink state, and the oscillation of the
transmission coefficients has a single period. The π Berry phase and the linear dispersion relation of kink
states can be extracted from the transmission data. For a bilayer graphene device, there are two topological
kink states with two oscillation periods. Our proposal provides an experimentally feasible route to
manipulate and characterize the valley-polarized topological kink states in classical wave and electronic
graphene-type crystalline systems.
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Introduction.—Topological kink states broadly exist in
the domain walls of magnetic topological insulators [1,2],
electronic graphene-type systems [3–7], and classical wave
graphene systems [8–14]. Aside from the theoretical
studies of kink states in bilayer graphene [3,15–20], recent
experimental observations have generated great interest in
exploring the exotic properties of such states [5,6,21–23].
However, the kink states are restricted to a very narrow
region, which makes it rather difficult to characterize with
common techniques, such as angle resolved photoemission
spectroscopy. At the present, the approaches of STM,
transport, and infrared measurement can only prove the
existence of a kink state. The pseudospin-momentum
locking property, the band structure, and even the number
of kink states have not been determined experimentally.
Similar problems also exist in topological insulators [1,2],
the graphenelike classical wave systems [8–14], and
MoS2 [24].
The valley-polarized states can be used for fabricating

valley filter, a key device for valleytronics applications
[25–29]. The domain walls in graphene systems, which
host valley-polarized topological kink states, can serve as
valley filters [27,28]. Nevertheless, in a single domain wall
the valley current cannot be easily manipulated. Based on a
current splitter [30,31] composed of two crossed domain
walls, the current partition rule of the kink state is

investigated, indicating the manipulation of valley-polarized
kink states through a splitter [32,33]. The control of current
in such a splitter is still difficult since the morphology of the
domain wall is unchangeable when the device is fabricated,
thus prohibiting the manipulation of the kink states.
For the applications of valleytronics, the manipulation

of valley-polarized current conveniently is essential. Very
recently, domain networks in bilayer graphene have been
observed experimentally [34,35], which makes the inter-
ference of the kink states possible. We adopt this platform
for the characterization and manipulation of kink states
through quantum interference.
In this Letter, we study the quantum interference of the

Aharanov-Bohm (AB) interferometer [34,36] composed of
topological kink states locating at the domain walls of
graphene systems (see Fig. 1). Both the magnetic field and
the gate voltage can be utilized to manipulate these kink
states, in which only the valley-polarized current is allowed
for propagation and interference. The magnitude of the
valley-polarized current can be adjusted periodically in a
wide range by varying the Fermi energy or a magnetic field.
The number of kink states can be obtained from the
oscillation pattern of the transmission coefficients. For a
monolayer graphene interferometer, there is one kink state
and one oscillation period, while for a bilayer graphene
system, two kink states and two periods exist. Specifically

PHYSICAL REVIEW LETTERS 121, 156801 (2018)

0031-9007=18=121(15)=156801(6) 156801-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.156801&domain=pdf&date_stamp=2018-10-08
https://doi.org/10.1103/PhysRevLett.121.156801
https://doi.org/10.1103/PhysRevLett.121.156801
https://doi.org/10.1103/PhysRevLett.121.156801
https://doi.org/10.1103/PhysRevLett.121.156801


for the former case, a π Berry phase and a linear band
structure of the kink state can be obtained from the
transport data. The exotic kink states can broadly exist
in graphene-type systems, including their classical wave
cousins [8–14], and thus can be realized in the present
experiments.
Model and methods.—Four-terminal graphene-

nanoribbon-based devices with a single splitter [see
Figs. 2(a) and 2(b)] or two splitters [see Fig. 1] are
investigated. Under a small voltage bias between terminal
1 and the other terminals, only electrons of valleyK can flow
from terminal 1 into the central region. In the tight-binding
representation, the model Hamiltonian reads [18,28]

Hm ¼
X
i

εic
†
i ci þ

X
hiji

tðeiϕijc†i cj þ e−iϕijc†jciÞ; ð1Þ

where c†i and ci are the creation and annihilation operators of
electrons at site i, respectively. In the four terminals, the on-
site potential is ϵi ¼ V; thus, the neutral point is shifted by

the gate voltage V. It guarantees that in the terminals there
are dozens of states for each valley at the Fermi level [37]. In
the central region, εi defines the domain walls [4,28]. For
monolayer graphene, there are two set of sublattices, namely,
A and B. In the blue (gray) region [see Figs. 2(a) and 2(b)],
εA ¼ Uð−UÞ and εB ¼ −UðUÞ. The second term represents
the nearest-neighbor coupling with energy t. The uniform
perpendicular magnetic field exists only in the central region
and is accounted for by the phase factor ϕij.
Adopting the transfer matrix method, the transmission

coefficients are calculated [29,38]. Following the standard
procedure, each transmission coefficient tijmn from state i
in terminal m to state j in terminal n is obtained. The
valley-resolved transmission coefficients are accessed by
collecting tijmn in two separate valleys (K and K0):
TK1K2
mn ðE;BÞ ¼ P

i∈K1

P
j∈K2

tijmn, with E the Fermi energy
and B the magnetic field. The total transmission coefficient
is Tmn ¼ TKK

mn þ TKK0
mn þ TK0K

mn þ TK0K0
mn , and the correspond-

ing valley polarization is Pmn ¼ ðTKK
mn þ TKK0

mn − TK0K
mn −

TK0K0
mn Þ=Tmn. In the numerical calculation we use U ¼

0.1t and V ¼ 0.2t, with t the energy unit in Eq. (1).
Under the gauge transformation, the magnetic field B is
related to ϕ by B ¼ 2hϕ=3

ffiffiffi
3

p
a2πe with a the C—C bond

length. At zero temperature, the current Imn is proportional
to Tmn due to the Landauer-Buttiker formula, so we are
only concerned with Tmn in the following discussion.
Single splitter.—The band structure of the kink states for

the monolayer graphene model is displayed in Fig. 2(c).
The propagation direction of the kink state of different
valleys is opposite to each other. First, the transport of
the kink states in devices with a single splitter, shown in
Figs. 2(a) and 2(b), is investigated. Current injected from
terminal 1 can only transmit into terminals 2 and 3. Note
that in the domain wall near terminal 2, the current is of
valley K, too, because the energy band is reversed [15].
We find T12 þ T13 ≃ 1 [see Figs. 2(d) and 2(e)] due to the
valley conservation, and both T12 and T13 are high valley
polarized [see Fig. 2(f)], signaling that the nearly pure
valley currents are obtained in terminals 2 and 3. In the
following, we discuss only the magnitudes of the trans-
mission coefficients. The angle-dependent partition rule in
Ref. [32] is reproduced in Figs. 2(d) and 2(e) with nonzero
E and B. For a smooth splitter, the partition of the valley
current is determined by the intersection angle at the cross
point and is insensitive to the Fermi level (near the neutral
points), the weak magnetic field, and the specific line shape
of the splitter.
Monolayer graphene interferometer.—Now we focus

on the interferometer formed by domain walls with two
splitters, as shown in Fig. 3(a). The incoming wave from
terminal 1, at the left splitter, is partitioned to terminal 2 and
the upper arm of the interferometer. At the right splitter,
again the wave is split into terminal 3 and the lower arm.
Then the wave along the lower arm meets the first splitter

FIG. 1. Schematic view of the kink state interferometer under
the magnetic field. Four terminals are attached to the central
region. In the central region, the domain walls (yellow paths) are
defined by the lines across which the sign of mass term in
graphene reverses. The purple arrows indicate the propagation
direction of the valley K electrons, and the gray vertical arrows
stand for the magnetic field.

(a) (b)

(c)

(f)
(e)(d)

FIG. 2. Schematics for two types of kink state splitter: straight
line (a) and cosine (b) shaped. (c) Band structures for kink states
in monolayer graphene model. (d),(e) Angle θ dependence of T12

and T13 for model (a) and (b) for different E and B, respectively.
(f) θ dependence of valley polarization of T12 and T13 when
E ¼ 0, B ¼ 0 for model (a) and (b). The devices’ width is
L ¼ 600a.
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and is split for the third time. The process happens
repeatedly and the current flow into terminal 2 or terminal
3 results from the multibeam interference. The Fermi level
E and magnetic field B dependence of T13ðE;BÞ are shown
in Figs. 3(c) and 3(d). Also, T12 þ T13 ≃ 1 due to the weak
backscattering. Significantly, both T12 and T13 are modu-
lated by B and E periodically in a wide range (e.g.,
Tmax=min
13 ¼0.93=0.41 corresponds to Tmin =max

12 ¼ 0=0.57).
Note that both T12 and T13 are nearly valley polarized, so
the device is a well controllable valley filter.
The details of T13 are displayed in Figs. 4(a) and 4(b). In

Fig. 4(a), two main characteristics are observed: (i) T13

shows a minimum at B ¼ 0 and E ¼ 0, and (ii) the
oscillation of T13ðEi; BÞ versus B is shifted periodically
as Ei changes. The magnetic flux enclosed by the inter-
ferometer (from the period of T13) is about h=e, indicating
the good performance of the AB interferometer. To under-
stand the characteristics better, the redistribution of valley
K electrons from terminal 1 in the interferometer is pictured

by the nonequilibrium local density of states (DOS)
[see Figs. 4(c) and 4(d) with the parameters marked in
Fig. 4(a)]. It is calculated by ρðr; EÞ ¼ ½GrΓLGa�r=2π, with
Gr=a the Green function and ΓL the linewidth function
[30,32]. ρðr; EÞ is large around the domain walls and is
infinitesimal otherwise, indicating the good formation of
the interferometer. Moreover, in Fig. 4(c) (Tmin

13 ), there is
current flow into both terminals 2 and 3. In Fig. 4(d), the
current flows into terminal 3 with terminal 2 blocked. So
the interference of the valley current is well tuned by the
magnetic field.
Figure 4(b) shows the T13 versus E relation when B ¼ 0.

T13 varies periodically, in analogy to Fig. 4(a), indicating
that the Fermi level plays a similar role as that of a magnetic
field, i.e., providing an extra phase. Physically the wave
function is ΨðrÞ ¼ Ψðr⊥Þeikkl, with kk the momentum.
When E ¼ 0, kk is zero and the wave function gains no
dynamic phase during the propagation (see Fig. S1 in
Ref. [39]). However, when E ≠ 0, kkl contributes a phase to
the wave function and changes the interference. Since the
wave in the interferometer can only propagate clockwise,
the extra phases of transmission amplitude acquired from
the magnetic field and the Fermi level are similar. To
explore the peaks’ features of T13, the local DOS of an
isolated kink state circle [the blue path in Fig. 3(b)] is
shown in Fig. 4(b). The peaks’ positions of T13 and DOS
are the same. It means the peaks of T13 result from the
resonance tunneling through the kink state circle.
Interestingly, we find that the zero energy is located in
the middle of two peaks. It is from the π Berry phase of the
kink state. The wave function of the kink state Ψðr⊥Þ is
made of two components (pseudospin), which bears the
pseudospin-momentum locked topological nature [40].
After evolving along a closed circle, Ψðr⊥Þ acquires a π
Berry phase [39]. Thus, the Bohr-Sommerfeld quantization
condition kkl0 ¼ 2nπ is modified to kkl0 ¼ 2nπ þ π (l0 is
the circumference of the interferometer), which means no
resonant peak is located at the zero energy. So the π Berry
phase can be measured from the features of T13.
Additionally, the dispersion relation of the kink states can
also be extracted from T13. For example, in Fig. 4(b), there
are n peaks from E ¼ 0 to En and the corresponding
momentum is kk;n ¼ ð2nþ 1Þπ=l0. In Fig. 4(e), the En ∼
kk;n relation is shown, in good agreement with the dispersion
relation adopted from Fig. 2(c).
To clarify the above characteristics, the scattering matrix

method is adopted [41,42]. At the left splitter, the ampli-
tudes of the incident and outgoing waves are shown by a1
or a2 and c1 or c2, respectively [see Fig. 3(b)]. Assuming no
backscattering, they are related by ðc2; c1ÞT ¼ Sða1; a2ÞT,
with

S ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1 − α
p

e−iθ=2
ffiffiffi
α

p
eiðπ−θÞ=2ffiffiffi

α
p

eiðπ−θÞ=2
ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
e−iθ=2

�

(a)

(b) (e)

(c)

(d)

FIG. 4. (a) B and (b) E dependence of T13 along the dashed
lines in Fig. 3(d). The dashed curve in (a) is from Eq. (2). The red
curve in (b) is the DOS of an isolated kink state circle. (c),(d)
ρðr; EÞ for points marked in (a). (e) The energy band of kink state
in graphene around valley K.

(a)

(c) (d)

(b)

FIG. 3. Schematic of the kink state interferometer (a) and wave
propagation (b). Two-dimensional map of E and B dependence
of T12 (c) and T13 (d). The sample sizes are L ¼ 600a and
W ¼ 600

ffiffiffi
3

p
a.
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the scattering matrix. In S,
ffiffiffi
α

p
and

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
are the

amplitudes of the wave function from terminal 1 to 2
and the upper arm of the interferometer, respectively. The
Berry phase is also accounted in S, e.g. from a1 to c2, a
phase of e−iθ=2 is acquired when the momentum direction
rotates an angle θ anticlockwise. In the right splitter,
ðc3;a2e−iðφþθÞ=2ÞT ¼Sðc2eiðφþθÞ=2;0ÞT . Here, φ¼ϕþkkl0
is the combination of the magnetic phase and the dynamic
phase. Finally, we have

T12ðα;φÞ ¼ jc1j2 ¼
4αcos2 φ

2

ð1 − αÞ2 þ 4αcos2 φ
2

;

T13ðα;φÞ ¼ jc3j2 ¼
ð1 − αÞ2

ð1 − αÞ2 þ 4αcos2 φ
2

; ð2Þ

with T12 þ T13 ¼ 1 by using a1 as a unit. The result is a
Fabry-Perot-type interference and it comes from the multi-
beam interference. When φ ¼ 0, T12 shows a maximum
and T13 shows a minimum, the same as in Fig. 3. From the
sample size in Fig. 3, we have θ ≃ 0.615π, and it corre-
sponds to α ≃ 0.22 [see Fig. 2(c)]. By substituting this
value into Eq. (2) and using kk ¼ 0, the analytical results
are displayed in Fig. 4(a), in good agreement with the
numerical curve for E ¼ 0. The small discrepancy at ϕ ¼ π
is due to the intervalley scattering at the intersections when
the circulating current is large. This mechanism is omitted
in the analytical approach.
The realization of monolayer graphene-based domain

walls may be difficult in experiment. The Hamiltonian in
Eq. (1) serves as a toy model to underline the nature of
topological kink states conveniently. Recently, the topo-
logical kink states have been observed in classical wave
graphene systems [8–14]. The physical picture behind it is
the same as monolayer graphene. Thus our device, acting as
a valleytronics prototype in classical wave graphene sys-
tems, can be fabricated under current experimental setups
[8,14]. Similar to monolayer graphene, the topological kink
states also exist in the line defect of MoS2 [24], h-BN, etc.
The experimental realization in these systems is also
expected. Based on domain walls in topological insulators
[1,2], the linear band structure and the π Berry phase can be
obtained with our proposal.
Bilayer graphene interferometer.—From the technique

aspect, kink state interferometers in bilayer graphene are
more accessible in experiments [5,6,21–23,34]. In the
following we investigate the Bernal-stacking bilayer gra-
phene device. The model Hamiltonian is Hb ¼ Htop

m þ
Hbottom

m þP
ijt⊥ðc†i cj þ c†jciÞ. It is constructed by the

top and bottom layer of monolayer graphene [Eq. (1)]
and the coupling in between. The spatial inversion asym-
metry of bilayer graphene is induced by applying an
electric field. In our model, it is accounted for by the
on-site potential difference between two layers. In the blue

(gray) region of Fig. 5(a), εi ¼ Uð−UÞ in the upper layer
and εi ¼ −UðUÞ in the bottom layer with U ¼ 0.1t. The
nearest coupling between two layers is t⊥ ¼ 0.15t.
Figure 5 plots the results for the bilayer graphene model.

In Figs. 5(c) and 5(d), both T12 and T13 versus B show
periodical oscillations and the period is the same as the case
for the monolayer model because of the same sample sizes.
In particular, T12=T13, proportional to the pure valley
current in terminals 2 and 3, can be tuned for 1.68=1.53
times [ðTmax

13 =Tmin
13 Þ=ðTmax

12 =Tmin
12 Þ]. So the interference in

bilayer graphene has promising application in valley
current modulation as well. Different from the monolayer
graphene model, which has only one period, T13 in
Fig. 5(c) has two periods. It is ascribed to the double-kink
states in the bilayer model [see Fig. 5(b)]. When E ¼ 0, the
phases of two kink states are φ� ¼ ϕ� k0kl, including the

same magnetic phase ϕ and nonzero dynamic phases with
�k0k the momentum of two kink states. So T12 and T13 are

the summation of two separate kink states’ transmission. It
can be directly obtained by using the scattering matrix
method:

T12ðα;ϕÞ ¼
4αcos2 φþ

2

ð1− αÞ2 þ 4αcos2 φþ
2

þ 4αcos2 φ−
2

ð1− αÞ2 þ 4αcos2 φ−
2

;

T13ðα;ϕÞ ¼
ð1− αÞ2

ð1− αÞ2 þ 4αcos2 φþ
2

þ ð1− αÞ2
ð1− αÞ2 þ 4αcos2 φ−

2

:

ð3Þ

In Fig. 5(c), the fitting curves from Eq. (3) are plotted
(α ¼ 0.28 and k0kl ¼ 1.75), in close agreement with the

numerical results. From Eq. (3), two periods associated
with φ� are clearly seen. The double-kink states in bilayer
graphene have not been verified yet; e.g., the conductance
is smaller than 4e2=h [5,21]. Thus, our proposal can
provide direct evidence to explore them. In addition, the
two periods’ oscillation exists in the presence of moderate
disorder (see Fig. S5 in Ref. [39]). So the double-kink states

(a)

(b)

(c)

(d)

FIG. 5. (a) Schematics for wave propagation in bilayer gra-
phene model. (b) Energy band of kink states in bilayer graphene
around K point. T12 and T13 versus B (c) when E ¼ 0 and versus
E (d) when B ¼ 0. The red curves are from Eq. (3).
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can be confirmed in experiment more easily with our
proposal; i.e., no quantized conductance is required.
Figure 5(d) shows the E dependence of T12 and T13 when
B ¼ 0. The two period feature still holds. But there exists
an irregular oscillation pattern which should be ascribed to
the nonlinear dispersion of kink states in bilayer graphene
[see Fig. 5(b)]. Figure 5(d) also demonstrates that valley
current can be tuned by the Fermi level in bilayer graphene.
From Eqs. (2) and (3), the modulation of the valley current
is dominated by the interference phase, so the above
discussions hold true for interferometers of irregular shapes
[34]. Additionally, the characterization of topological kink
states in the above discussion is immune to the orientation
of the nanoribbon [39].
In bilayer graphene, the desired domain wall structures

are fabricated with electrostatic gating [3,23] or stacking
line defects [34,35]. Our results for bilayer graphene can be
realized under the current graphene techniques.
Conclusion.—In conclusion, an AB interferometer is

proposed to characterize and manipulate the topological
valley kink states. The output of the current is perfectly
valley polarized and changes periodically in a large range
when sweeping the Fermi energy or the magnetic field. It
provides a versatile and efficient way to manipulate the
valley degrees of freedom. For monolayer graphene, due to
a single kink state, transmission coefficients have only one
period. The π Berry phase and the linear band of the kink
state can be extracted from the transport measurements.
However, for the bilayer graphene, there are two kink
states. The transmission coefficients modulated by a
magnetic flux show two periods. Our proposal can also
be used in experiments to characterize the topological
nature of the kink states.
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