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We study Bose-Einstein condensation and the formation of Bose stars in virialized dark matter halos and
miniclusters by universal gravitational interactions. We prove that this phenomenon does occur and it is
described by a kinetic equation. We give an expression for the condensation time. Our results suggest that
Bose stars may form kinetically in mainstream dark matter models such as invisible QCD axions and fuzzy
dark matter.
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Introduction.—Bose stars are lumps of Bose-Einstein
condensates bound be self-gravity [1,2]. They can be made
of condensed dark matter (DM) bosons—say, invisible
QCD axions [3] or fuzzy DM [4]. That is why their physics,
phenomenology, and observational signatures have
remained in the focus of cosmological research for decades
[5]; see the recent papers [6,7]. Unfortunately, the for-
mation of Bose stars is still poorly understood, and many
recent works have to assume their existence.
In this Letter, we study Bose-Einstein condensation in the

virialized DM halos and miniclusters caused by universal
gravitational interactions. We work at large occupation
numbers, which is correct if the DM bosons are light.
Notably, we consider the kinetic regime where the initial
coherence length and period of the DM particles are close to
the deBroglie values ðmvÞ−1 and ðmv2Þ−1 andmuch smaller
than the halo size R and condensation time τgr,

mvR ≫ 1; mv2τgr ≫ 1: ð1Þ

We numerically solve microscopic equations for the ensem-
ble of gravitating bosons in this case and find that Bose stars
indeed form. We derive an expression for τgr and study the
kinetics of the process.
To our knowledge, gravitational Bose-Einstein condensa-

tion in thekinetic regime has not been observed in simulations
before. Old works considered only contact interactions
between the DM bosons [8] which are nonuniversal and
suppressed by quartic constants λ ∼ 10−50 [9] and 10−100 [10]
in models of QCD axions and fuzzy DM (string axions). Our
results show that in these cases gravitational condensation is
faster: Although the Newton constantGm2 is tiny, its effect is
enhanced by the collective interaction of large fluctuations in
the boson gas at large distances; cf. [11].
On the other hand, all previous numerical studies of Bose

star formation considered coherent initial configurations
of the bosonic field—a Gaussian wave packet [12] or the

Bose stars themselves [13,14]. A spectacular simulation of
structure formation by wavelike (fuzzy) DM [13,15] started
from a (almost) homogeneous Bose-Einstein condensate. In
all these cases, the Bose stars form almost immediately
[12,13] from the lowest-energy part of the initial condensate.
We consider an entirely different situation (1) when the

DM bosons are virialized in the initial state. The closest
study to ours was performed in Ref. [16], but the kinetic
regime was not achieved there due to computational
limitations. Note that we do not consider the scenario of
Ref. [11], where axions form a cosmological condensate at
the radiation-dominated stage; cf. [17]. Indeed, at realign-
ment, the momenta of such axions are comparable to the
Hubble scale, and Eq. (1) is violated.
The birth of the Bose star.—Consider N nonrelativistic

gravitationally interacting bosons in a periodic box of size
L. At large occupation numbers, this system is described by
a random classical field ψðt; xÞ [8,18] evolving in its own
gravitational potential Uðt; xÞ:

i∂tψ ¼ −Δψ=2mþmUψ ;

ΔU ¼ 4πGmðjψ j2 − nÞ; ð2Þ

where the mean particle density n≡ N=L3 is subtracted
in the second line for consistency [15]. Notably,
Eqs. (2) simplify in dimensionless variables: Substitutions
x ¼ x̃=mv0, t ¼ t̃=mv20, U ¼ v20Ũ, and ψ ¼ v20ψ̃

ffiffiffiffiffiffiffiffiffiffi
m=G

p
exclude parameters m and G from the equations and
reference velocity v0 from the initial conditions. The
rescaled particle number is Ñ ≡ R

d3x̃jψ̃ j2 ¼ Gm2N=v0.
We fix the initial conditions in momentum space. A

representative class of them describes Gaussian-distributed
bosons, jψ̃ p̃j2 ¼ 8π3=2Ñe−p̃

2

, with random phases arg ψ̃ p̃,
where p̃≡ p=mv0. Fourier-transforming ψ̃ p̃, we obtain an
isotropic and homogeneous initial configuration ψ̃ð0; x̃Þ
with a minimal coherence length in Fig. 1(a). Then we
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numerically evolve Eqs. (2) using an exceptionally stable
3D algorithm; see Supplemental Material, Sec. S2 and
movie [19], and Refs. [20,21]. Apart from the erratic
motion of ψ peaks and depths, nothing happens for a long
time t < τgr, where τ̃gr ∼ 106 for the solution in Fig. 1.
Then a coherent, compact, and spherically symmetric
object appears at t > τgr; see Fig. 1(b). With time, the
object grows in mass and moves in a Brownian way due to
the interaction with the fluctuating environment.
To explain what happens, we recall that any interaction

between the bosons should lead to thermal equilibrium and
in the case of large occupation numbers to the formation of
a Bose-Einstein condensate. Gravitational interaction is not
an exception, as pioneering works [11,16] argued. But then
the condensate cannot appear in a homogeneous state [17].
Rather, it should fragment due to Jeans instability into a set

of isolated Bose stars (cf. [8]), which is therefore the actual
end state of the condensation process.
The field profiles of the isolated Bose stars are found

by solving Eqs. (2) with the stationary spherical ansatz
ψ ¼ ψsðrÞe−iωst,U ¼ UsðrÞ at each ωs < 0; see, e.g., [22].
We computed them using a separate code. Results coincide
with the profiles of condensed objects on the lattice [see
Fig. 1(c)], thus proving that we indeed observe the
nucleation of Bose stars. We performed simulations for a
large set of parameters, for δ- and θ-like initial distribu-
tions, jψpj2 ∝ δðjpj −mv0Þ and θðmv0 − jpjÞ, in addition to
the Gaussian. Every time, we observed the formation of a
Bose star with correct profile ψ sðrÞ, UsðrÞ correct mass
Ms ∝ ψ1=2

s ð0Þ, and correct size proportional to M−1
s ; see

[22]. Note that the Bose stars nucleate wide and rarefied,
then shrink, and become dense as they accumulate bosons.
Unlike in other studies, no “seed” Bose condensate was
present in our simulations at τ < τgr; otherwise, it would
grow above the background in a short time—see Fig. 1(d).
The spectrum.—To look deeper into the initial, seem-

ingly featureless stage of gas evolution, we compute the
distribution Fðt;ωÞ ¼ dN=dω of bosons over energies ω.
This quantity equals the Fourier image of the correlator

F ¼
Z

dt1
2π

d3xψ�ðt; xÞψðtþ t1; xÞeiωt1−t21=τ21 ð3Þ

in the kinetic regime ðmv20Þ−1 ≪ τ1 ≪ τgr; see Supplemental
Material Sec. S1 [19] and Ref. [23]. In dimensionless
calculations, we use F̃ ¼ mv20F=N normalized to unity:R
F̃dω̃ ¼ 1, where ω̃ ¼ ω=mv20.
Figure 1(e) shows that the spectrum (3) completely

changes during evolution at t < τgr. It starts from a wide
bell F̃ ∝ ω̃1=2e−2ω̃ corresponding to Gaussian distribution in
momenta in Fig. 1(a). As time goes on, F develops a peak at
lowω and becomes close to thermal at intermediate energies,
F ∝ ω−1=2; see the graph at t ∼ τgr in Figs. 1(e) and 1(f). At
high ω, it still falls off exponentially, as high-frequency
modes thermalize slowly [24]. Once the Bose star nucleates,
a small δ peak appears in the distribution. With time, this δ
peak grows in height and shifts to the left; see the spectrum
1b in Fig. 1(e). It explicitly shows condensed particles of
the same energy ωs < 0 inside the growing Bose star.
Below, we use the δ peak at ω < 0 as an indicator of

Bose star nucleation: We define τgr as the moment when the
peak is twice higher than the fluctuations in Fðt;ωÞ.
Condensation time.—In the kinetic regime, evolution of

Fðt;ωÞ is described by a kinetic equation—this fact can be
proven by solving Eqs. (2) perturbatively and using approx-
imations (1); see Supplemental Material Sec. S1 [19] and
cf. Refs. [23,25]. One therefore expects that the time of Bose
star formation τgr is proportional with some coefficient b to

the kinetic relaxation time: τgr ¼ 4b
ffiffiffi
2

p
=ðσgrvnfÞ, where

σgr ≈ 8πðmGÞ2Λ=v4 is the transport Rutherford cross

FIG. 1. Formation of a Bose star from a random field with
initial distribution jψ̃ p̃j2 ∝ e−p̃

2

and total mass Ñ ¼ 50 in the box
0 ≤ x̃; ỹ; z̃ < 125. These values correspond to the center of the
axion minicluster with Mc ∼ 10−13 M⊙ and Φ ∼ 2.7 in the
discussion at the end of this Letter. (a),(b) Sections z̃ ¼ const
of the solution jψ̃ðt̃; x̃Þj at (a) t̃ ¼ 0 and (b) t̃ > τ̃gr ≈ 1.08 × 106.
(c) Radial profile jψ̃ðr̃Þj of the object in (b) (points) compared to
the Bose star ψ̃sðr̃Þwith ω̃s ≈ −0.7 (line). (d) Maximum of jψ̃ðx̃Þj
over the box as a function of time. (e) Spectra (3) at times of
(a) and (b) and at the eve of Bose star nucleation, t̃ ¼
1.05 × 106 ∼ τ̃gr. (f) The spectrum at t ∼ τgr (dashed line) versus
the solution of Eq. (5) (circles) and thermal law F̃ ∝ ω̃−1=2 (dots).
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section of gravitational scattering, Λ ¼ logðmvLÞ is the
Coulomb logarithm, and f ¼ 6π2n=ðmvÞ3 ≫ 1 is the
phase-space density that appears due to Bose stimulation
[8]. The coefficient b ¼ Oð1Þ accounts for the details of
the process. It is expected to depend weakly on the initial
distribution.
Taking all factors together, we obtain the expression

τgr ¼
b

ffiffiffi
2

p

12π3
mv6

G2n2Λ
; b ∼ 1; ð4Þ

that apart from the Coulomb logarithm Λ involves only
local parameters, i.e., the boson number density n and
characteristic velocity v. So, up to weak logarithmic
dependence on the size L, the formation of the Bose star
can be regarded as a local process, with a periodic box
representing a central part of some DM halo. We will
confirm this intuition below.
We performed simulations of the gas with a Gaussian

initial distribution at different L̃ and ñ. Our results for τgr
[circles in Fig. 2(a)] cover 2 orders of magnitude, but they
are nevertheless well fitted by Eq. (4) with v ¼ v0 and b ≈
0.9 [upper line in Fig. 2(a)]. To confirm that Eq. (4) is
universal, we repeated the calculations for the initial δ
distribution, jψpj2 ∝ δðjpj −mv0Þ [squares in Fig. 2(a)].
The new vales of τgr are still described by Eq. (4), albeit
with slightly different coefficient b ≈ 0.6. We conclude that

Eq. (4) is a practical and justified expression for the time of
Bose star formation.
Kinetics.—Let us show that the evolution of Fðt;ωÞ in

Fig. 1(e) is indeed governed by the Landau kinetic equation
[24] for the homogeneous isotropic Coulomb ensemble:

∂tF̃ ¼ τ−10 ∂ω̃½Ã∂ω̃F̃ þ ðB̃ F̃−ÃÞF̃=2ω̃�; ð5Þ

see Supplemental Material Sec. S1 4 [19] for a derivation.
Here the scattering integral in the right-hand side involves
Ãðω̃Þ¼R∞

0 dω̃1min3=2ðω̃;ω̃1ÞF̃2ðω̃1Þ=ð3ω̃1ω̃
1=2Þ and B̃ðω̃Þ ¼R

ω̃
0 dω̃1F̃ðω̃1Þ, and it is explicitly proportional to the inverse
relaxation time τ−10 ¼8π3n2G2ðΛþaÞ=mv60∼τ−1gr . Notably,
Eq. (5) is valid in the leading logarithmic approximation
Λ ≫ 1, which is too rough for our numerical solutions with
Λ ∼ 5. To get a quantitative comparison, we added an
unknown correction a ¼ Oð1Þ to Λ.
We numerically evolve Eq. (5) starting from the same

initial distribution as in Fig. 1. In Fig. 1(f), the solution
Fðt;ωÞ (circles) is compared to the microscopic distribu-
tion (3) (dashed line) at t ≈ τgr, where a ≈ 5 is obtained
from the fit. We observe an agreement in the kinetic region
ω̃ ≫ 2π2=L̃2, which confirms Eq. (5) at t < τgr.
Note that, unlike in the case of short-range interactions

[26], thermalization in the Landau equation does not
proceed via power-law turbulent cascades [24], and we
do not observe them in Figs. 1(e) and 1(f). Nevertheless,
we think that Eq. (5) provides the basis for an analytic
description of gravitational Bose-Einstein condensation.
Miniclusters.—So far, we have assumed that a homo-

geneous ensemble in the box correctly describes central
parts of DM halos. Now, we study the isolated halos
themselves and verify this assumption. Recall that in a large
volume nonrelativistic gas forms clumps at scales R≳
2π=kJ due to Jeans instability, where k2J ¼ 2πGnm2hω−1i
and the average is computed with FðωÞ. Starting numerical
evolution from the homogeneous ensemble with δ-distrib-
uted momenta at L > 2π=kJ, we indeed observe the
formation of a virialized minicluster in Fig. 2(c). With
time, it remains stationary until the Bose star appears in its
center; see Fig. 2(d) and movie [19]. Thus, the formation of
Bose stars is not specific to finite boxes.
We checked that our kinetic expression for τgr works for

the virialized miniclusters. To this end, we generated many
different miniclusters, computed their central densities n
and virial velocities hv2i ¼ −2hωi=m using the ω < 0 part
of the distribution FðωÞ, and estimated their radii R. In
Fig. 2(b), we plot the times of Bose star formation in the
miniclusters versus these parameters and Λ ¼ logðmvRÞ
(points). The numerical data are well approximated by
Eq. (4) with b ≈ 0.7 (line), although the statistical fluctua-
tions are now larger due to limited control over the
momentum distribution inside the miniclusters.

FIG. 2. (a) Time to Bose star formation in the cases of Gaussian
(empty circle) and δ-peaked (empty square) initial distributions.
The δ graphs are shifted downwards (τgr → τgr=10) for visuali-
zation purposes. Lines depict fits by Eq. (4). (b) The same for
isolated miniclusters. (c),(d) Slices z̃ ¼ const of the solution
jψ̃ðt̃; x̃Þj describing the formation of a Bose star in the center of a
minicluster; Ñ ¼ 290, L̃ ≈ 63.

PHYSICAL REVIEW LETTERS 121, 151301 (2018)

151301-3



Estimating the virial velocity v2 ∼ 4πGmnR2=3 in the
halo of radius R, one recasts Eq. (4) in the intuitively simple
form τgr ∼ 0.047ðR=vÞðRmvÞ3=Λ, where the numerical
factor is computed. Remarkably, τgr equals to the free-fall
time R=vmultiplied by the cube of kinetic constant Rmv ≫
1 in Eq. (1). In the nonkinetic case Rmv ∼ 1, the Bose stars
form immediately [12,13,15].
Bose star growth.—After nucleation, the Bose stars start

to acquire particles from the ensemble. Because of computa-
tional limitations, we are able to observe only the first decade
of theirmass increase that proceeds according to the heuristic
law MsðtÞ ≃ cv0ðt=τgr − 1Þ1=2=Gm with c ¼ 3� 0.7. The
ratio t=τgr in this expression suggests that the growth of the
Bose stars is a kinetic process deserving a separate study.
Discussion.—Let us argue that the Bose stars appear in

the popular cosmological models even if we conservatively
assume that halos or miniclusters in these models are
initially virialized. If the DM is made of invisible QCD
axions [3], the smallest substructures are axion miniclusters
[27,28] of typical mass Mc ∼ 10−13 M⊙ [29]. These mini-
clusters can be characterized [28] by the ratio Φþ 1≡
n=n̄jRD of their central density n to the cosmological axion
density n̄ at the radiation-dominated stage when they are
still in the linear regime. Substituting their typical param-
eters [28] into Eq. (4) and expressing the result in terms of
Φ and Mc, we find

τgr ∼
109 yr

Φ3ð1þΦÞ
�

Mc

10−13 M⊙

�
2
�

m
26 μeV

�
3

;

where the reference axion mass is taken from Ref. [9].
Thus, typical miniclusters with Φ ∼ 1 condense during the
lifetime of the Universe, the densest ones withΦ ∼ 103 [28]
in several hours. Bose stars are important [6], as they hide a
part of DM from observations. After becoming large, they
may explode into relativistic axions [7] or emit radio-
photons via parametric resonance [2], which at different
redshifts may explain FRBs [30] and the anomalies of
ARCADE 2 and EDGES [31].
Note that the gravitational relaxation of virialized QCD

axions is significantly faster than the relaxation due to self-
coupling λ≡m2=f2a, where fa ∼ 1011 GeV is the Peccei-
Quinn scale. Indeed, in the kinetic regime the relaxation
rates are proportional to the cross sections, and τself=
τgr ∼ σgr=σself ∼ ð10faG1=2=vÞ4. In typical miniclusters
v ∼ 10−10 ≪ 10faG1=2, and gravitational interactions win
by τself=τgr ∼ 1012.
Another popular class of DM models is based on string

axions forming fuzzy DM [4]. An interesting though
recently constrained [32] scenario considers the smallest
mass m ∼ 10−22 eV of these particles [15] when their de
Broglie wavelength inside the dwarf galaxies is comparable
to the size of the galaxy cores, mvR ∼ 1. As we argued, the
Bose stars should appear in these cores in free-fall time.

This explains their fast formation [15] in numerical
simulations. At larger masses, one substitutes typical
parameters of dwarf satellites into Eq. (4):

τgr ∼ 106 yr

�
m

10−22 eV

�
3
�

v
30 km=s

�
6
�
0.1 M⊙=pc3

ρ

�
2

:

The Bose stars nucleate there if m≲ 2 × 10−21 eV, at the
boundary of an experimentally allowed mass window [32].
Then the missing satellites may hide as Bose stars. At even
larger m, the Bose stars may form in miniclusters and in
cores of large galaxies. They may also grow overcritical
and explode [7]. Note that self-interaction of typical string
axions [10] with fa ∼ 10−2G−1=2 is less effective than
gravity, because v ≪ 10faG1=2 in all structures.
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