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We compute the persistence for the 2D-diffusion equation with random initial condition, i.e., the
probability p0ðtÞ that the diffusion field, at a given point x in the plane, has not changed sign up to time t.
For large t, we show that p0ðtÞ ∼ t−θð2Þ with θð2Þ ¼ 3=16. Using the connection between the 2D-diffusion
equation and Kac random polynomials, we show that the probability q0ðnÞ that Kac’s polynomials, of
(even) degree n, have no real root decays, for large n, as q0ðnÞ ∼ n−3=4. We obtain this result by using yet
another connection with the truncated orthogonal ensemble of random matrices. This allows us to compute
various properties of the zero crossings of the diffusing field, equivalently of the real roots of Kac’s
polynomials. Finally, we unveil a precise connection with a fourth model: the semi-infinite Ising spin chain
with Glauber dynamics at zero temperature.
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Persistence and first-passage properties have attracted a
lot of interest during the last decades in physics, both
theoretically [1–3] and experimentally [4–7], as well as in
mathematics [8]. For a stochastic process XðtÞ, the per-
sistence P0ðtÞ is the probability that it has not changed sign
up to time t. In nonequilibrium statistical physics, this is an
interesting observable which is nonlocal in time and thus
carries useful information on the full history of the system
on a given time interval [9].
In many physically relevant situations, P0ðtÞ decays

algebraically at late time t ≫ 1, P0ðtÞ ∼ t−θ, where θ is
called the persistence exponent [1–3]. For instance, for
Brownian motion or Lévy flights, which are Markov
processes, θ ¼ 1=2. But in many cases, in particular, for
coarsening dynamics [10], and more generally for non-
Markov processes, the exponent θ is nontrivial and
extremely hard to compute [1–3]. Consequently, there
are very few non-Markov processes, for which θ is known
exactly. One notable example is the 1D Ising chain with
Glauber dynamics. In this case, at temperature T ¼ 0, the
persistence exponent for the local magnetization can be
computed exactly, yielding θIsing ¼ 3=8 [11,12].
Another example that has attracted a lot of attention

[13–19] is the d-dimensional diffusion equation where the
scalar field ϕðx; tÞ at point x ∈ Rd and time t evolves as
∂tϕðx; tÞ ¼ Δϕðx; tÞ, where initially ϕðx; t ¼ 0Þ is a
Gaussian random field, with zero mean and short-range
correlations hϕðx; 0Þϕðx0; 0Þi ¼ δdðx − x0Þ. For a system
of linear size L, the persistence p0ðt; LÞ is the probability
that ϕðx; tÞ, at some fixed point x in space, does not change
sign up to time t [13,14]. We assume that x is far enough
from the boundary, where the system is invariant under
translations, and p0ðt; LÞ is thus independent of x. It was

shown [13,14] that p0ðt; LÞ takes the scaling form, for large
t and large L, with t=L2 fixed

p0ðt; LÞ ∼ L−2θðdÞhðL2=tÞ; ð1Þ

with hðuÞ → c1, a constant, when u → 0 and hðuÞ ∝ uθðdÞ
when u → ∞, where θðdÞ was found, numerically,
to be nontrivial, e.g., θð1Þ ¼ 0.120 50ð5Þ…, θð2Þ ¼
0.187 5ð1Þ… [13,14,16]. Remarkably, the persistence for
d ¼ 1was observed in experiments on magnetization of spin
polarized Xe gas and the exponent θexpð1Þ ≃ 0.12 was
measured [7]. This scaling form (1) shows that p0ðt; LÞ ∼
t−θðdÞ for an infinite system. Alternatively, θðdÞ can also be
obtained, in a finite system of size L, from p0ðt; LÞ ∼
L−2θðdÞ for t ≫ L2. To study p0ðt; LÞ it is useful to introduce
the normalized process XðtÞ ¼ ϕð0; tÞ=hϕð0; tÞ2i [20].
Being Gaussian, XðtÞ is completely characterized by its
autocorrelation function which, for an infinite
system L → ∞, behaves like Cðt; t0Þ ¼ hXðtÞXðt0Þi ¼
½2 ffiffiffiffiffi

tt0
p

=ðtþ t0Þ�d=2. In terms of logarithmic time T ¼ ln t,
YðTÞ ¼ XðeTÞ is a Gaussian stationary process with covari-
ance cðTÞ ¼ ½sechðT=2Þ�d=2 (see Fig. 1). In particular,
cðTÞ ≈ 1 − dT2=16 for T → 0, indicating a smooth process
with a finite density of zero crossings ρ0 ¼ ð2πÞ−1 ffiffiffiffiffiffiffiffi

d=2
p

[21]. Although several very accurate approximation schemes
exist to compute θðdÞ [13–15,22,23], there is not a single
value of d for which this persistence exponent could be
computed exactly. In this Letter, we focus on the case d ¼ 2.
As we show below, this case is particularly interesting
because it is related to a variety of other interesting models
(see Fig. 1), in particular to the celebrated Kac’s random
polynomials [17–19,24]. These are polynomials of degree n
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KnðxÞ ¼
Xn
i¼0

aixi; ð2Þ

where the coefficients ai’s are independent and identi-
cally distributed (i.i.d.) real Gaussian random variables of
zero mean and unit variance. Of course, KnðxÞ has n roots
in the complex plane. These roots tend to cluster, when
n → ∞, close to the unit circle centered at 0. But because
the coefficients ai’s are real, the statistics of the number
of real roots is singular, and it has thus generated a lot of
interest [25,26]. In particular, the average number of real
roots grows, for n ≫ 1, like ∼ð2=πÞ ln n, hence much
smaller than n. It is thus natural to ask: what is the
probability q0ðnÞ that KnðxÞ has no real roots for an even
n? It was shown in Ref. [24] that q0ðnÞ decays to zero as
q0ðnÞ ∼ n−4b where, remarkably, b turns out to be the
persistence exponent for the diffusion equation in d ¼ 2
[17,18], i.e., b ¼ θð2Þ.
To establish the connection between these two problems,

one first notices that almost all the real roots of KnðxÞ lie
very close to �1, in a window of size Oð1=nÞ [27]. In
addition, it was shown in Ref. [24] (see also Ref. [28]) that,
for large n, the real roots of KnðxÞ behave independently
and identically within each of the four subintervals
ð−∞;−1�, ½−1; 0�, [0, 1], and ½1;þ∞Þ. One can thus focus
on one of these intervals, say [0, 1], and consider q̃0ðx; nÞ,
which is the probability that Kn has no real root in ½0; x�,
with 0 < x ≤ 1. Clearly, q0ðnÞ ∼ ½q̃0ð1; nÞ�4 for large n. For
x → 1−, it was shown in Refs. [17–19,24] that the behavior
of q̃0ðx; nÞ is governed by the zero-crossings properties of
the GSP YðTÞ with covariance cðTÞ ¼ sechðT=2Þ, i.e., the
same GSP that governs the zero crossings of the 2D-
diffusion equation (see Fig. 1). In particular, in the scaling
limit n → ∞, x → 1− with nð1 − xÞ fixed [recall that the
scaling region around �1 is of order Oð1=nÞ], one can
show that q̃0ðx; nÞ takes the scaling form [17,18],

q̃0ðx; nÞ ∼ n−bh̃½nð1 − xÞ�; ð3Þ

with h̃ðuÞ → c2, a constant, for u → 0 and h̃ðuÞ ∼ ub

for u → ∞. The large u behavior follows from the
fact that q̃0ðx; n → ∞Þ is well defined. This form (3) is
the exact analogue of the finite size scaling form in Eq. (1),
with n playing the role of L2 and (1 − x) the role of inverse
time 1=t [17,18]. This implies that b ¼ θð2Þ can be
extracted either for finite n, from q̃0ð1; nÞ ∼ n−b, or for
n → ∞ (i.e., for the Gaussian power series) from
q̃0ðx; n → ∞Þ ∼ ð1 − xÞb, as x → 1−. The study of this
exponent b has generated a lot of interest in the math
literature [8,19,24,29–31] and the best existing bounds are
0.1443 38… ¼ 1=ð4 ffiffiffi

3
p Þ ≤ b ≤ 1=4 ¼ 0.25 [29,31].

Main results.—Here, we exploit a connection between
the Kac’s polynomials and the so-called truncated real
orthogonal ensemble of random matrices [32–34] (see
below) to obtain the exact result

b ¼ θð2Þ ¼ 3=16 ¼ 0.1875; ð4Þ

which is fully consistent with numerical simulations
[13,14,16] and the above exact bounds [29,31] as well
as with a recent conjecture in number theory [35]. We also
compute the full probability distribution of the number of
zero crossings Nt of ϕð0; tÞ up to time t. Let pkðt; LÞ ¼
ProbðNt ¼ kÞ and pkðtÞ ¼ pkðt; L → ∞Þ. We show that,
for large t and k, with k= ln t fixed, pkðtÞ takes the large
deviation form proposed in Refs. [17,18],

pkðtÞ ∼ t−φðk= ln tÞ; ð5Þ

where the large deviation function φðxÞ is computed
exactly. Its asymptotic behaviors are given by

φðxÞ ∼

8>><
>>:

3
16
þ x ln x; x → 0

1
2σ2

ðx − 1
2πÞ2; jx − 1

2π j ≪ 1

π2

4
x2 − ln 2

2
x; x → ∞;

ð6Þ

with σ2 ¼ 1=π − 2=π2. Close to the center, for x ¼ 1=ð2πÞ,
the quadratic behavior in Eq. (6) shows that pkðtÞ has a
Gaussian peak, of width σ lnðtÞ, close to its maximum
hNti ≈ lnðtÞ=ð2πÞ. However, away from this central
Gaussian regime, pkðtÞ is flanked, on both sides of hNti,
by nontrivial tails (6)—the right one being, however, still
Gaussian (at leading order), though different from the
Gaussian central part. Finally, we also obtain the large t
behavior of the cumulants hNp

t ic of arbitrary order p

hNp
t ic∼κp lnt; κp¼

2p−2

π2
Xp
m¼1

ð−2Þm−1Γ2

�
m
2

�
SðmÞ
p ; ð7Þ

where SðmÞ
p is the Stirling number of the second kind [36].

In particular, one recovers κ1 ¼ 1=ð2πÞ and κ2 ¼ σ2 ¼
1=π − 2=π2 (see Ref. [22]) and obtains, for instance,

GSP with
c(T ) = sech(T/2)

Di usion equation 
       in d = 2

Truncated random
orthogonal matricesIsing chain with 

Glauber dynamics

GSP with
c(T ) = sech(T/2)

Truncated random
orthogonal matricesIsing chain with

Glauber dynamics

Di usion equation
      in d = 2

FIG. 1. Connections between the four models studied here: they
are related to the same Gaussian stationary process (GSP) with
correlator cðTÞ ¼ sechðT=2Þ. Our main result is the exact value
of the persistence exponent for this GSP, θð2Þ ¼ b ¼ 3=16,
together with the full statistics of its zero crossings (5)–(7).
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κ3 ¼ 4=π − 12=π2. Our main results in Eqs. (4), (6), and (7)
are not only relevant for the 2D-diffusion equation, but
also for the whole class of models discussed in this Letter
that can me mapped onto the GSP, YðTÞ, with correlator
cðTÞ ¼ sechðT=2Þ (see Fig. 1). In particular, the proba-
bility PkðTÞ that it has exactly k zeros up to T is given, for
large T and k ¼ OðTÞ, by PkðTÞ ∼ e−Tφðk=TÞ, with the same
function φðxÞ (6). Similarly, the cumulants of the number
of zero crossings are given by Eq. (7), with the substitution
ln t → T and the same coefficients κp. We further show that
this GSP has a Pfaffian structure: the multitime correlation
functions of sgn½YðTÞ� can be written as Pfaffians [37].
Besides, we demonstrate that the zeros of YðTÞ form a
Pfaffian point process [37]. Finally, we establish an exact
mapping between the 2D-diffusing field and the semi-
infinite Ising spin chain with Glauber dynamics at zero
temperature. As we will see, using the exact result for the
persistence exponent of the full chain, θIsing ¼ 3=8 [11,12],
this connection provides an alternative derivation of the
exact result θð2Þ ¼ b ¼ θIsing=2 ¼ 3=16.
Truncated random orthogonal matrices.—We consider

the set of real orthogonal matrices, of size ð2nþ 1Þ ×
ð2nþ 1Þ (with n a positive integer), uniformly distributed,
with the Haar measure, on the orthogonal group
Oð2nþ 1Þ. Let O be such a real random orthogonal
matrix, such that OOT ¼ I. We define its truncation M2n
as the 2n × 2n random matrix obtained by removing the
last column and row from the matrix O

O ¼
�
M2n u

vT a

�
; ð8Þ

where u, v are column vectors and a is a scalar. Such
truncated matrices, together with their unitary counterpart,
were studied in the context of mesoscopic physics [34,42]
and extreme statistics [43]. The orthogonality condition
OOT ¼ I implies that M2nMT

2n ¼ I − uuT and, hence, all
the eigenvalues ofM2n lie in the unit disk (since their norm
is less than unity). They are the roots of the characteristic
polynomial gMðzÞ ¼ detðzI −M2nÞ, which after some
manipulations, can be written as [44] [Lemma 6.7.2]
(see also [37])

gMðzÞ¼detO detðzM2n− IÞðaþzvTðI−zM2nÞ−1uÞ: ð9Þ

Since the eigenvalues zi’s ofM2n are such that 0 < jzij < 1,
one has necessarily that detðziM2n − IÞ ¼ zNi gMð1=ziÞ ≠ 0

in the right-hand side of Eq. (9). This implies that the zi’s
are the zeros of ½aþ zvTðI − zM2nÞ−1u� [see Eq. (9)].
Expanding in powers of z shows that the eigenvalues of
M2n are the zeroes of the series

F2nðzÞ ¼ aþ
X∞
k¼1

zkvTMk−1
2n u; ð10Þ

with jzj < 1 (note that vTMk−1
2n u are real numbers).

Quite remarkably, one can show [44] that the scaled
sequence of the real coefficients of the series in
Eq. (10), i.e.,

ffiffiffiffiffiffi
2n

p fa; vTu; vTM2nu; vTM2
2nu;…g, con-

verges, as n → ∞, to a sequence of i.i.d. Gaussian random
variables, with zero mean and unit variance. This implies
that, for n → ∞, the real eigenvalues of M2n in Eq. (8) and
the real zeroes of KnðxÞ in Eq. (2) in the interval ½−1; 1�
share the same statistics.
But what about the connection between these two

models for finite n? In fact, it is known that the real
eigenvalues of M2n accumulate close to x ¼ �1, also on a
window of sizeOð1=nÞ [34], like for the Kac’s polynomials
[27]. Hence, if one considers the probability Q̃0ðx; nÞ that
M2n has no real eigenvalue in ½0; x�, it is natural to expect
that, as for Kac’s polynomials (3), for large n and x → 1

keeping nð1 − xÞ fixed, Q̃0ðx; nÞ behaves as

Q̃0ðx; nÞ ∼ n−γH̃(nð1 − xÞ); ð11Þ

where the exponent γ is yet unknown and, a priori, the
scaling function H̃ðuÞ is different for h̃ðuÞ in Eq. (3).
However, for n → ∞, we have seen that q̃0ðx; nÞ and
Q̃0ðx; nÞ do coincide, since they both correspond to the
probability that the (infinite) Gaussian power series has
no real root in ½0; x�. This implies that Q̃0ðx; n → ∞Þ ¼
q̃0ðx; n → ∞Þ ∼ ð1 − xÞb, which, together with the scaling
form (11), shows that γ ¼ b. Finally, since we expect that
Q̃0ð1; nÞ exists, one has H̃ðuÞ → c3, a constant, when
u → 0, and therefore Q̃0ð1; nÞ ∼ n−b for large n. One can
also consider the probability Q0ðx; nÞ that M2n has no real
eigenvalue in ½−x; x�. Using the statistical independence of
the positive and negative real eigenvalues for large n, one
has Q0ðx; nÞ ∼ ½Q̃0ðx; nÞ�2, and in particular Q0ð1; nÞ ∼
n−2b for large n. Using similar arguments, one can show
that the full statistics of the zero-crossings of the diffusion
equation (equivalently of the real roots of KnðxÞ) can be
obtained, at leading order for large n, from the statistics of
the number of real eigenvalues N n of the random matrix
M2n, which we now study. Our analysis follows the line
developed in Ref. [45] where the real eigenvalues of real
Ginibre matrices were studied.
We start with the full joint distribution of the eigenvalues

of M2n (8). Since M2n is real and of even size 2n, it has l
(with l even) real eigenvalues (and possibly l ¼ 0), denoted
by λ1 ≤ … ≤ λl, and m ¼ n − l=2 pairs of complex con-
jugate eigenvalues z1 ¼ x1 þ iy1; z2 ¼ z1;…; z2m−1 ¼
xm þ iym; z2m ¼ z2m−1 with x1 ≤ … ≤ xm. Then the
ordered eigenvalues of M2n conditioned to have l real
eigenvalues have the joint distribution [33,34]

pðl;mÞðλ⃗; z⃗Þ ¼ CjΔðλ⃗; z⃗Þj
Yl
j¼1

wðλjÞ
Y2m
j¼1

wðzjÞ; ð12Þ
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where C≡ Cm;n is a normalization constant,

w2ðzÞ ¼ ð2πj1 − z2jÞ−1; ð13Þ

and Δ is a Vandermonde determinant. The generating
function (GF) of N n (the number of real roots) reads

hesN niM2n
¼

�Y2n
i¼1

1 − ð1 − esÞχRðζiÞ
�

M2n

; ð14Þ

for s < 0, where the product runs over all the eigenvalues
ζi’s (both real and complex) ofM2n. In Eq. (14), χRðzÞ ¼ 1
if z is real and 0 otherwise and h� � �iM2n

denotes an average
over the joint distribution (12), further summed over all
possible ðl; mÞ [46,47]. It turns out that such averages (14)
can be computed explicitly in terms of Pfaffians [46–52], as
follows. Let fðzÞ be any smooth integrable complex
function, and fpjðzÞg2n−1j¼0

be an arbitrary sequence of
monic polynomials of degree j, then

�Y2n
i¼1

fðζiÞ
�

M2n

¼ PfðUfÞ
PfðU1Þ

; ð15Þ

where Pf denotes a Pfaffian [53] and Uf is a skew
symmetric (i.e., antisymmetric) matrix of size 2n × 2n
with entries uj;k ¼ ðpj−1f; pk−1fÞw and skew product

ðh; gÞw ¼
Z
R2

hðxÞgðyÞsgnðy − xÞwðxÞwðyÞdxdy

þ 2i
Z
C

hðzÞgðz̄Þsgn½ImðzÞ�wðzÞwðz̄Þd2z; ð16Þ

where wðzÞ is given in Eq. (13). To compute the ratio in
Eq. (15), it is convenient to choose the monic polynomials
pjðzÞ to be skew orthogonal with respect to the product
(16) [with this choice, the denominator in Eq. (15) is easy to
compute [37]]. Using these polynomials [33], the GF in
Eq. (14) can be evaluated explicitly using Eq. (15), leading
to [54] (see also [55])

hesN niMN
¼ det

0≤j;k≤n−1

�
δj;k −

1 − e2s

πðjþ kþ 1=2Þ
�
: ð17Þ

Let us denote by Hn the n × n matrix with entries
hj;k ¼ ½πðjþ kþ 1=2Þ�−1. We write the determinant in
Eq. (17) as detðI − αHnÞ ¼ exp Tr½lnðI − αHnÞ�, with α ¼
ð1 − e2sÞ and then expand the logarithm, to get
detðI − αHnÞ ¼ exp½Pm≥1ðαm=mÞTrðHm

n Þ�. The asymp-
totic analysis of the traces yields [56]

TrHm
n ¼ 1

2π

Z∞

0

sechm
�
πu
2

�
du logn½1þoð1Þ�; n→∞:

By summing up these traces, we obtain

hesN niM2n
¼n½1=ð2πÞ�

R
∞
0
logf1−ð1−e2sÞsech½ðπuÞ=2�gduþoð1Þ: ð18Þ

For s < 0, the integral can be calculated explicitly as

hesN niM2n
∼ nψðsÞ;

ψðsÞ ¼ 1

8
−
� ffiffiffi

2
p

π
cos−1

�
esffiffiffi
2

p
��2

: ð19Þ

By taking s → −∞ we get the probability that M2n has
no real eigenvalues, using Q0ð1; nÞ ¼ ProbðN n ¼ 0Þ ¼
lims→−∞hesN niM2n

∼ n−2b. From Eq. (19), we thus obtain
b ¼ ð−1=2Þlims→−∞ψðsÞ ¼ 3=16, as announced in Eq. (4).
From the GF in Eq. (19), we also obtain the cumulants
ofN n. To export these results to the 2D-diffusion equation,
we recall that the number of zero crossings Nt identifies
with the positive real eigenvalues N þ

n of M2n. Hence, for
n ≫ 1, the number of positive and negative N �

n real
eigenvalues are both independent and identically distrib-
uted [54], one obtains that hesNþ

n iM2n
∼ nψðsÞ=2. By further

expanding ψðsÞ close to s ¼ 0 [37], one finally obtains the
result announced in Eq. (7). Similarly, transposing this
result hesN þ

n iM2n
∼ nψðsÞ=2 to the diffusion equation, one

obtains the large deviation form in Eq. (5) with φðxÞ ¼
maxs∈R½sx − ψðsÞ=2� [57]. From this relation, together
with the expression for ψðsÞ in Eq. (19), we obtain the
asymptotic behaviours given in Eq. (6) [37].
Several results found so far point to an intriguing

connection with the zero temperature Glauber dynamics
of the Ising spin chain [11,12]. First, b ¼ 3=16 is thus half
of the persistence exponent, θIsing ¼ 3=8, found there
[11,12]. In fact, 3=16 is exactly the persistence exponent
corresponding to the spin at the origin of the semi-infinite
Ising chain [11,12]. Furthermore, the expression found for
ψðsÞ in Eq. (19) is strongly reminiscent of the expression
found for the persistence exponent for the q-state Potts
chain, with T ¼ 0 Glauber dynamics [see, e.g., Eq. (2) of
Ref. [11]]. So what is this connection?.
To understand it, let us come back to the 2D-diffusion

field XðtÞ ¼ ϕð0; tÞ=hϕð0; tÞ2i and consider the “clipped”
process sgn½XðtÞ� [58]. As recalled above XðtÞ has the same
statistical properties as the Kac’s polynomials KnðxÞ in
the limit n → ∞ and x → 1. Transposing recent results
obtained for Kac’s polynomials in the limit n → ∞ [59],
we can compute the multitime correlation functions of
sgn½XðtÞ�, which are given by Pfaffians [53]

hsgn½Xðt1Þ� � � � sgn½Xðt2mÞ�i ∼ PfðAÞ ð20Þ
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for 1 ≪ t1 ≪ t2 ≪ � � � ≪ t2m, and where A ¼ ðai;jÞ1≤i;j≤2m
is a 2m × 2m antisymmetric matrix with ai;i ¼ 0 and for
i < j, ai;j ¼ −aj;i where

ai;j ¼
2

π
sin−1 ½hXðtiÞXðtjÞi� ¼

2

π
sin−1

�
2

ffiffiffiffiffiffiffi
titj

p
ti þ tj

�
: ð21Þ

By symmetry, the even correlation functions vanish. For
m ¼ 1, Eqs. (20) and (21) hold for any normalized Gaussian
process. However, for m > 1, this Pfaffian structure, which
holds for the GSP YðTÞ ¼ XðeTÞ, is nontrivial.
Let us now consider the semi-infinite Ising spin chain,

whose configuration at time t is given by fσiðtÞgi≥0, with
σiðtÞ ¼ �1. Initially, σið0Þ ¼ �1 with equal probability
1=2 and, at subsequent time, the system evolves accord-
ing to the Glauber dynamics at T ¼ 0 (see Refs. [11,12]
for details). Using the formulation of the dynamics in
terms of coalescing random walks [11,12], we show that
the multitime correlation functions of σ0 are also given by
the same Pfaffian formula (20), namely, for 1 ≪ t1 ≪
t2 ≪ … ≪ t2m [37]

hσ0ðt1Þ…σ0ðt2mÞi ∼ PfðAÞ; ð22Þ

with precisely the same antisymmetric matrix A (21).
Therefore, we conclude that sgn½XðtÞ� for the 2D-diffu-
sion equation and σ0ðtÞ in the semi-infinite Ising chain
with Glauber dynamics are actually the same process in
the large time limit [60]. One can then use the known
result for the persistence of σ0ðtÞ [11,12] to conclude that
b ¼ 3=16, as found above by a completely different
method. Note that the exact relation found here σ0ðtÞ ∝
sgn½ϕð0; tÞ� (for t ≫ 1), where ϕðx; tÞ is the 2D-diffusing
field, is reminiscent, albeit different from, the so-called
OJK approximate theory [61] in phase ordering kinetics
[62], which instead approximates the 1D spin field by the
sign of the 1D diffusing field.
To conclude, we have computed exactly the persistence

exponent of 2D-diffusion equation, or equivalently the one
of Kac’s polynomials, θð2Þ ¼ b ¼ 3=16. This was done in
two different ways: (i) by using the connection to truncated
random orthogonal matrices, and for which our results are
actually mathematically rigorous [54], (ii) by establishing
an exact mapping to the semi-infinite Ising chain with
Glauber dynamics at T ¼ 0 (see Fig. 1). Thanks to (i), we
computed the full statistics of the number of the zero
crossings (5)–(7). These RMT tools will certainly be useful
to compute other properties of the GSP with correlator
cðTÞ ¼ sechðT=2Þ and of the different physical models
associated with it (see Fig. 1).
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Gaussian Analytic Functions and Determinantal Point
Processes, University Lecture Series (American Mathemati-
cal Society, Providence, 2009), Vol. 51.

[45] E. Kanzieper, M. Poplavskyi, C. Time, R. Tribe, and O.
Zaboronski, What is the probability that a large random
matrix has no real eigenvalues?, Ann. Appl. Probab. 26,
2733 (2016).

[46] A. Borodin and C. D. Sinclair, The ginibre ensemble of
real random matrices and its scaling limits, Commun. Math.
Phys. 291, 177 (2009).

[47] C. D. Sinclair, Averages over Ginibre’s ensemble of
random real matrices, Int. Math. Res. Not. 2007, rnm015
(2007).

[48] H. J. Sommers, Symplectic structure of the real Ginibre
ensemble, J. Phys. A 40, F671 (2007).

[49] P. J. Forrester and T. Nagao, Skew orthogonal polynomials
and the partly symmetric real Ginibre ensemble, J. Phys. A
41, 375003 (2008).

[50] G. Akemann and E. Kanzieper, Statistics of Real Eigen-
values in Ginibres Ensemble of Random Real Matrices,
Phys. Rev. Lett. 95, 230201 (2005).

[51] G. Akemann and E. Kanzieper, Integrable structure of
Ginibres ensemble of real random matrices and a
Pfaffian integration theorem, J. Stat. Phys. 129, 1159
(2007).

[52] R. Tribe and O. Zaboronski, Pfaffian formulae for one
dimensional coalescing and annihilating systems, Electron.
J. Pro 16, 2080 (2011).

[53] We recall that, for an antisymmetric matrix A of size
2m × 2m, the Pfaffian is defined as PfðAÞ ¼
1=ð2mm!ÞPσ∈S2m

ϵðσÞQm
i¼1 aσð2i−1Þ;σð2iÞ, where S2m is the

group of permutations of 2m elements.
[54] M. Gebert and M. Poplavskyi, On pure complex spectrum

for truncations of random orthogonal matrices and Kac
polynomials (to be published).

[55] P. J. Forrester, J. R. Ipsen, and S. Kumar, How many
eigenvalues of a product of truncated orthogonal matrices
are real?, arXiv:1708.00967 [Exper. Math. (to be
published)].

[56] H. Widom, Hankel matrices, Trans. Am. Math. Soc. 121, 1
(1966).

[57] Note that the computation of φðxÞ for x > 1=π requires
an analytical continuation of ψðsÞ for s > 0, which can be
done straightforwardly from its explicit expression in
Eq. (19).

PHYSICAL REVIEW LETTERS 121, 150601 (2018)

150601-6

https://doi.org/10.1007/s10955-008-9574-3
https://doi.org/10.1214/13-AOP852
https://doi.org/10.1214/13-AOP852
https://doi.org/10.1002/j.1538-7305.1944.tb00874.x
https://doi.org/10.1002/j.1538-7305.1944.tb00874.x
https://doi.org/10.1103/PhysRevLett.81.2626
https://doi.org/10.1103/PhysRevE.69.016106
https://doi.org/10.1103/PhysRevE.69.016106
https://doi.org/10.1090/S0894-0347-02-00386-7
https://doi.org/10.1090/S0894-0347-02-00386-7
https://doi.org/10.1090/S0273-0979-1995-00571-9
https://doi.org/10.1090/S0273-0979-1995-00571-9
https://doi.org/10.1007/BF02508472
https://doi.org/10.1088/0305-4470/37/4/011
https://doi.org/10.1088/0305-4470/37/4/011
https://doi.org/10.1007/s004400100176
https://doi.org/10.1007/s004400100176
https://doi.org/10.1142/S0219607705000103
https://doi.org/10.1142/S0219607705000103
https://doi.org/10.1155/2012/137271
https://doi.org/10.1214/08-AOP404
https://doi.org/10.1088/1742-5468/2010/12/P12018
https://doi.org/10.1088/1742-5468/2010/12/P12018
https://doi.org/10.1103/PhysRevE.82.040106
https://doi.org/10.1103/PhysRevE.82.040106
https://doi.org/10.1112/jlms.12061
https://dlmf.nist.gov/26.8#i
https://dlmf.nist.gov/26.8#i
https://dlmf.nist.gov/26.8#i
https://dlmf.nist.gov/26.8#i
https://dlmf.nist.gov/26.8#i
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.150601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.150601
https://doi.org/10.1007/s10955-016-1485-0
https://doi.org/10.1007/s10959-017-0766-0
https://doi.org/10.1088/0305-4470/33/10/307
https://doi.org/10.1088/1742-5468/aa9bb2
https://doi.org/10.1088/1742-5468/aa9bb2
https://doi.org/10.1214/15-AAP1160
https://doi.org/10.1214/15-AAP1160
https://doi.org/10.1007/s00220-009-0874-5
https://doi.org/10.1007/s00220-009-0874-5
https://doi.org/10.1093/imrn/rnm015
https://doi.org/10.1093/imrn/rnm015
https://doi.org/10.1088/1751-8113/40/29/F03
https://doi.org/10.1088/1751-8113/41/37/375003
https://doi.org/10.1088/1751-8113/41/37/375003
https://doi.org/10.1103/PhysRevLett.95.230201
https://doi.org/10.1007/s10955-007-9381-2
https://doi.org/10.1007/s10955-007-9381-2
https://doi.org/10.1214/EJP.v16-942
https://doi.org/10.1214/EJP.v16-942
http://arXiv.org/abs/1708.00967
http://arXiv.org/abs/1708.00967
https://doi.org/10.1090/S0002-9947-1966-0187099-X
https://doi.org/10.1090/S0002-9947-1966-0187099-X


[58] The “clipped” process has obviously the same zero-
crossings properties as XðtÞ itself.

[59] S. Matsumoto and T. Shirai, Correlation functions for zeros
of a Gaussian power series and Pfaffians, Electron. J. Pro 18,
1 (2013).

[60] Note that σ0 is thus a smooth process, which is at variance
with σi with i ≫ 1, which is nonsmooth.

[61] T. Ohta, D. Jasnow, and K. Kawasaki, Universal Scaling in
the Motion of Random Interfaces, Phys. Rev. Lett. 49, 1223
(1982).

[62] A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys.
51, 481 (2002).

PHYSICAL REVIEW LETTERS 121, 150601 (2018)

150601-7

https://doi.org/10.1214/EJP.v18-2545
https://doi.org/10.1214/EJP.v18-2545
https://doi.org/10.1103/PhysRevLett.49.1223
https://doi.org/10.1103/PhysRevLett.49.1223
https://doi.org/10.1080/00018730110117433
https://doi.org/10.1080/00018730110117433

