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Operationally accessible entanglement in bipartite systems of indistinguishable particles could be
reduced due to restrictions on the allowed local operations as a result of particle number conservation. In
order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an
operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring
Rényi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of
the operationally accessible entanglement that is both computationally and experimentally measurable.
Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions
and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at
most a double-log leading-order correction. A modification of the correlation matrix method confirms our
findings in systems of up to 105 particles.
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Entanglement encodes the amount of nonclassical infor-
mation shared between complementary parts of an extended
quantum state. For a pure state described by densitymatrix ρ,
it can be quantified via the Rényi entanglement entropies:
SαðρAÞ ¼ ð1 − αÞ−1 ln TrραA, where ρA is the reduced density
matrix of subsystem A and Sα is a nonincreasing function
of α. While the evaluation of the α ¼ 1 (von Neumann)
entanglement entropy requires a complete reconstruction
of ρ [1,2], integer valueswith α > 1 can be represented as the
expectation value of a local operator [3]. This has enabled
entanglement measurements in a wide variety of many-body
states, via bothquantumMonteCarlo [4–8] andexperimental
quantum simulators employing ultracold atoms [9–14]. In
these systems, the conservation of total particle number N
may restrict the set of possible local operations (a super-
selection rule) and can potentially limit the amount of
entanglement that can be physically accessed [15–22]. For
example, while a superfluid of N bosonic 87Rb atoms in a
one-dimensional optical lattice is highly entangled under a
bipartition into spatial subregions [10], much of the entan-
glement is generated by particle fluctuations that cannot be
transferred to a quantum register without access to a global
phase reference [23]. Wiseman and Vaccaro introduced an
operationalmeasure of entropy to quantify these effects [17],
but it is limited to the special case of α ¼ 1 and thus cannot be
used in tandem with current simulation and experimental
studies of entanglement.
In this Letter, we study how the operationally accessible

entanglement can be generalized to the Rényi entropies
with α ≠ 1. Recalling its definition for α ¼ 1, it is con-
structed by averaging the contributions to S1 coming from
each physical number of particles in the subsystem:

Sacc1 ðρAÞ ¼
XN
n¼0

PnS1ðρAn
Þ; ð1Þ

where ρAn
¼ PAn

ρAPAn
=Pn is the projection into the sector

of n particles in A, An, via PAn
which occurs with

probability Pn ¼ TrPAn
ρAPAn

. This projection constitutes
a local operation which can only decrease entanglement by
an amount bounded by the maximum entropy of the
classical number fluctuation probability distribution Pn.
Thus, a conservation law on the total number of particles
imposes that any Rényi generalization of Eq. (1) to Saccα

must satisfy 0 ≤ Sα − Saccα ≤ lnD, where D is the support
of Pn. Under this physical constraint, we show that a direct
extension of Eq. (1) to α ≠ 1 is not generally appropriate.
Instead, we reconsider the problem in terms of the

mathematical relationship between the von Neumann and
α ≠ 1 Rényi entropies—that of a geometric to power
mean—and identify a unique measure:

Saccα ðρAÞ ¼
α

1 − α
ln
X
n

Pne½ð1−αÞ=α�SαðρAn Þ; ð2Þ

which not only provides a lower bound on the amount of
accessible entanglement entropy in a pure state but is
measurable with current technologies for integer α > 1.
We validate that Eq. (2) reproduces Eq. (1) as α → 1 and

prove that it is a nonincreasing function of Rényi index α in
analogy with Sα. We show that Saccα ¼ 0 when all particles
have condensed into a single mode, e.g., a Bose-Einstein
condensate, and demonstrate that, in the limit of large
subsystem size, it agrees with the known behavior of Sacc1
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for free fermions in d spatial dimensions [24]—that the fixed
total particle number reduces the accessible entanglement
only by a subleading logarithm, Saccα ≈ Sα − 1

2
ln Sα. Such

asymptotic scaling is expected for 1d critical systems with
fixed N that can be described by a conformal field theory,
where the particle number distribution is Gaussian [25,26].
The main contributions of this work are (i) the intro-

duction of the Rényi generalization of the accessible
entanglement entropy, (ii) an investigation of its asymptotic
scaling properties for free fermions via the Widom theorem
supported by exact calculations for noninteracting 1d
lattice fermions, and (iii) a discussion of how the accessible
entanglement could be measured in ultracold atomic lattice
gases using current technology.
We begin with the observation that the Rényi entangle-

ment entropy with α ≠ 1 is a generalization of the α ¼ 1 von
Neumann entanglement entropy obtained by replacing a
geometric mean with respect to the reduced density matrix
ρA with a power mean. Extending this idea to Sacc1 ðρAÞ in
Eq. (1), there are now two geometric means to be replaced:
one over ρA and one over the number probability distribution
Pn. The resulting generalization is given by (see the
derivation in Supplemental Material [27])

Saccα ðρA; γÞ ¼ − ln

�X
n

PnðTrρAρα−1A Þγ=ðα−1Þ
�

1=γ
; ð3Þ

where we have introduced an as of yet undetermined power
mean exponent γ ¼ γðαÞ. In the limit γ → 0, one recovers
the direct extension of Eq. (1): Saccα ðρA; 0Þ ¼

P
N
n¼0

PnSαðρAn
Þ, which was previously proposed to study a

system of bosons in one dimension [29].
Defining ΔSαðγÞ≡ SαðγÞ − Saccα ðγÞ as the important

quantity which captures the reduction of the entanglement
due to a superselection rule, we now explore what restric-
tions are imposed on the exponent γ by the physical
constraint that 0 ≤ ΔSαðγÞ ≤ lnD. To this end, we consider
the example of a reduced density matrix of a spatial
partition of l sites, obtained from a pure state of N ≫ 1
particles, where the number fluctuations are described by
the normalized distribution: Pn ¼ AN exp½−ðN − nÞ= ffiffiffiffi

N
p �.

The corresponding eigenvalues of ρA are equal for each n:
λn;i ¼ l−nAN exp½−ðN − nÞ= ffiffiffiffi

N
p �, where i ¼ 1;…;ln. In

this case, D ¼ N þ 1, and the asymptotic dependence of
ΔSα>1ðγÞ, to leading order, on N for γ ≠ 1 − α−1 is given
by ΔSα>1ðγÞ ≈ ½(α=ðα − 1Þ) − ð1=γÞ� ffiffiffiffi

N
p

for γ > 0 and
ΔSα>1ðγÞ ≈ −N lnl for γ ≤ 0, which violates the condition
0 ≤ ΔSαðγÞ ≤ lnD for any γ ≠ 1 − α−1. If we modify the
above example by rearranging the probabilities in the
reverse order, i.e., replacing Pn with PN−n, we arrive at
the same conclusion for α < 1 (see Supplemental Material
[27] for a complete proof).
For γ ¼ 1 − α−1, it can be proven that the inequality 0 ≤

ΔSαðγÞ ≤ lnD is satisfied in general [27]. Moreover, for

this case, Saccα represents a lower bound for Sacc1 for α > 1

(upper bound forα < 1); i.e., Saccα is a nonincreasing function
of α, and, by construction, limα→1Saccα ¼ Sacc1 [27].
Substituting γ ¼ 1 − α−1 in Eq. (3), we obtain Eq. (2), which
we propose as the unique Rényi generalization of the
accessible entanglement entropy.
For more physical insight into the form of this measure,

we appeal to a previously noticed connection between the
von Neumann accessible entanglement and the Shannon
conditional entropy [24,30]. If the spectrum of the reduced
density matrix ρA is treated as a joint probability distribu-
tion of two random variables, one of which is the number of
particles n in partition A, then Eq. (1) is equivalent to the
conditional entropy of the probability distribution, where
the condition is information of n in the subregion. Many
different candidate measures for the classical conditional
Rényi entropy have been proposed [31–35], but if one
requires that they satisfy both monotonicity and the weak
chain rule, then the classical limit of Eq. (2) is recovered.
Having understood the origin of the Rényi generalized

accessible entanglement entropy, in order to actually
perform computations, we exploit the fact that, for pure
states of N particles, ρA is block diagonal in n, and thus
Eq. (2) can be conveniently rewritten as

Saccα ¼ Sα −H1=αðfPn;αgÞ; ð4Þ
where HαðfPngÞ ¼ ð1 − αÞ−1 lnPnP

α
n is the Rényi gen-

eralization of the Shannon entropy of Pn,

Pn;α ¼
Tr½PAn

ραAPAn
�

TrραA
ð5Þ

is a normalization of partial traces of ραA, and Pn;1 ¼ Pn.
From Eq. (4), one immediately recovers the previously
known result for α ¼ 1 thatΔS1 ¼ H1 [24], where we write
Hα ≡HαðfPngÞ for simplicity.
In the remainder of this Letter, we use Eqs. (4) and (5)

to calculate the Rényi generalized accessible entanglement
for two simple models of noninteracting particles. First,
we consider the case of N noninteracting bosons on a
d-dimensional hypercubic lattice of Ld sites with unit lattice
spacing. The ground state consists of all particles condensed
into one single-particle mode jΨi ¼ ðN!Þ−1=2ðΦ†

0ÞN j0i,
where Φ†

0 ¼
P

jBjb
†
j and b†j creates a boson on site j withP

jjBjj2 ¼ 1. We take a spatial bipartition A that contains a

set of ld contiguous sites and decompose Φ†
0 ¼

ffiffiffiffiffiffi
pA

p Φ†
A þffiffiffiffiffiffi

pĀ
p Φ†

Ā
with pA ¼ jh0jΦAΦ†

0j0ij2, pĀ ¼ 1 − pA, and Φ†
A

acts in A, and similarly for the complement Ā. Then,
the ground state can be directly written as the Schmidt
decomposition

jΨi ¼
XN
n¼0

λ1=2n jniA ⊗ jN − niĀ;
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where λn ¼ ðNnÞpn
Ap

N−n
Ā

, jniA ¼ ðn!Þ−1=2ðΦ†
AÞnj0iA, and

jN − niĀ ¼ ½ðN − nÞ!�−1=2ðΦ†
Ā
ÞN−nj0iĀ. For free bosons,

pA ¼ ðl=LÞd [7,36]. The reduced density matrix ρA
obtained by tracing out Ā is thus pure for each n: ρAn

¼
jnihnj resulting in Sα ¼ Hα and Pn;α ¼ Pα

n=
P

nP
α
n ⇒

Saccα ¼ 0. This is expected for the Bose-Einstein condensate
where, for N ≫ 1 with pA fixed, Pn ¼ λn approaches a
Gaussian distribution and Sα ¼ Hα ≈ 1

2
lnN [36,37] is gen-

erated from particle fluctuations between subregions.
To understand the behavior of Saccα for fermionic sta-

tistics, we focus on a microscopic model of noninteracting
fermions on a d-dimensional lattice where the correlation
matrix method [38–42] is applicable. This provides an
exponential simplification of the calculation of SαðρAÞ and
allows for the investigation of its asymptotic behavior. In
this case, A corresponds to some collection of ld lattice
sites, and the eigenvalues of ρA that correspond to having n

particles in partition A are λn;a ¼
Q

ld
j¼1½νnj;aj ν̄

ð1−nj;aÞ
j �, where

the index a runs over all possible configurations of the
occupation numbers nj;a ∈ f0; 1g with n ¼ P

jnj;a ∀ a
and ν̄j ¼ 1 − νj. Here, νj are the eigenvalues of the

correlation matrix ðCAÞij ¼ hc†i cji ¼ TrρAc
†
i cj, where i

and j are restricted to the spatial partition A and c†i (ci)
creates (annihilates) a spinless fermion at lattice site i
(cic

†
j þ c†jci ¼ δij) [38].

This approach can be generalized to calculate the particle
number projected Rényi entanglement SαðρAn

Þ ¼ Sα þ
ð1 − αÞ−1 ln ðPn;α=Pα

nÞ and thus Saccα ðρAÞ. However, as
we are interested in the reduction of entanglement due
to the presence of superselection rules, we focus on the
difference ΔSα ¼ Sα − Saccα , which depends only on

Pn;α ¼
X
a

Yld
j¼1

½νnj;aj;α ν̄
ð1−nj;aÞ
j;α �; ð6Þ

where νj;α ¼ ναj =ðναj þ ν̄αj Þ. An important first step is the
observation that Pn;α has the form of a Poisson-binomial
distribution [43] with ld different success probabilities νj;α
[44]. In order to investigate the asymptotic scaling of ΔSα
with linear subsystem size l, we need to consider the
behavior of Pn;α or, alternatively, its characteristic function
(Fourier transform) χαðλÞ ¼

Q
ld
i¼1 ½1 − νj;α þ νj;αeiλ�,

which can be expressed in terms of the matrix CA as

ln χαðλÞ ¼ Tr ln ½1 − CA;α þ CA;αeiλ�; ð7Þ

where CA;α ≡ Cα
A=½Cα

A þ ð1 − CAÞα�. This form is conven-
ient, as the α ¼ 1 case, providing access to the scaling of
Pn;1 ¼ Pn, has already been obtained for the d-dimensional
free Fermi gas by means of the Widom theorem [24,45–51].
Motivated by these results, we calculate the characteristic

function χαðλÞ for a d-dimensional spatial subregion with
dimensionless linear sizel in the limitl ≫ 1,wherel is now
treated as a continuous variable.We find thatPn;α is a normal
distribution with the same average as Pn and variance
σ2α ¼ σ2=α ∼ ld−1 lnl=α, where σ2 is the variance of Pn
[27]. In this case, Pn;α ∼ Pα

n ⇒ H1=αðfPn;αgÞ ¼ HαðfPngÞ,
leading to

ΔSα ≈Hα ≈ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2α1=ðα−1Þ

p
∼
1

2
ln ðld−1 lnlÞ; ð8Þ

which, if compared to the asymptotic scaling of Sα ∼
ld−1 lnl [49], implies that ΔSα ≈ 1

2
ln Sα. We thus conclude

that fixed N reduces the Rényi generalized accessible
entanglement of the free Fermi gas only by a subleading
double logarithm of l for l ≫ 1.
To confirm the asymptotic predictions of Eq. (8), we now

apply the extended correlation matrix method introduced
above to a model of N free spinless lattice fermions on a
ring of 2N sites (half filling) governed by the Hamiltonian
H ¼ −

P
iðc†i ciþ1 þ H:c:Þ [52]. The correlation matrix for

the ground state Fermi sea is ðCAÞij ¼ ½sin (πði − jÞ=2)�=
½2N sin (πði − jÞ=2N)�. We studied systems with up to
N ¼ 105 fermions and partition size l ¼ 105 sites, where
we calculate ΔSα and Hα using Pn;α which we obtain via a
recursion relation for the Poisson-binomial distribution [53]:

Pn;αðjÞ ¼ νj;αPn−1;αðj − 1Þ þ ν̄j;αPn;αðj − 1Þ: ð9Þ

The desired distribution is reached after l recursive steps;
i.e., Pn;α ¼ Pn;αðlÞ, and Eq. (9) drastically reduces the
complexity to an Oðl2Þ algorithm [53].
The results in Fig. 1 demonstrate the predicted loga-

rithmic scaling ofΔS2 with σ2 ¼ 2σ22 as well as the fact that
asymptotically, ΔS2 ≈H2, i.e., that Pn;2 appears to behave
as a continuous normal distribution. For this particular case
of free fermions, we find that Sα − Saccα > Hα, but this may
not be generically true in interacting models. Additionally,
as seen in Fig. 2, Pn is very narrow, with σ2 < 1.4, and thus
the main contribution comes from only a few points around
its peak. This suggests that, to truly reach the asymptotic
regime, we need to further increase σ2 by several orders of
magnitude beyond our current numerical capability.
As an alternative, we generalize the known asymptotic

behavior of νj [54–56] to νj;α as

νj;α ¼
�
1þ exp

�
−απ2ðl − 2jþ 1Þ
2½lnð8lÞ þ γem�

��−1
; ð10Þ

where γem ≈ 0.6 is the Euler-Mascheroni constant, and
calculate the characteristic function χαðλÞ of Pn;α. We find
that Pn;α is asymptotically a normal distribution with
variance σ2α ¼ lnl=ðαπ2Þ for any α > 0 [27] extending
the results of the Widom theorem for d ¼ 1 to real-valued
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α. This is further validated using Eq. (10) with l ≈ e3000 as
shown in Fig. 3.
Thus, for free fermions, superselection rules fixing the

total number of particles only marginally reduce the
accessible entanglement that can be transferred from a
many-body state to a quantum register. This is also true for
interacting 1d fermions in the Luttinger liquid regime
[24,57]. The free fermion result is robust even when
extending to noncontiguous subregions, e.g., a partition
of size l ¼ N corresponding to even (odd) sites where the
correlation matrix is diagonal and νj;α ¼ νj ¼ 1

2
. Here, Sα ¼

l ln 2 and Pn;α ¼ Pn ∀ α are described by a simple
binomial distribution (normal distribution, asymptotically)
with l equal success probabilities ν ¼ 1

2
. Thus, σ2 ¼ l=4

and ΔSα ∼ ln σ2, yielding ΔSα ∼ 1
2
ln Sα.

This picture can be drastically altered by strong inter-
actions [58] or in bosonic systems [29], where the con-
tribution of particle fluctuations to entanglement are large
and the accessible entanglement is suppressed to zero.
In summary, by exploiting a general relation between

geometric and power means, we derive a unique measure
Saccα in Eq. (2) which generalizes the accessible entangle-
ment in the presence of a superselection rule, previously
defined only for von Neumann entropies, to the more
readily measurable Rényi entanglement entropies Sα.
This definition preserves the limit α → 1, provides a

lower bound on Sacc1 for α > 1, and is smaller than Sα while
not exceeding the maximum information lost to particle
fluctuations. Saccα ¼ 0 for a Bose-Einstein condensate of
fixed total particle number, while, for free fermions, we find
that the corresponding superselection rule reduces the

amount of accessible entanglement from its unconstrained
value by a subleading correction that asymptotically scales
as the logarithm of the width of the probability distribution
describing particle fluctuations in the subregion. We con-
firm this prediction numerically using the correlation
matrix method on a lattice model of free fermions, where
we have simplified the calculation by relating the required
partial traces ραA to the Poisson-binomial distribution which
can be calculated using a simple recursion relation. This
method can be extended to other models of noninteracting
fermions, including those with long-range or correlated

FIG. 2. The spectrum of the correlation matrix CA of free
fermions calculated via exact diagonalization (empty circles) and
from the asymptotic relation in Eq. (10) (filled circles) for
N ¼ 105 at half filling with partition size l ¼ 105. Insets: The
corresponding number probability distribution Pn vs n − hni on a
linear (left) and log (right) scale. The solid line shows a normal
distribution N with the average hni and variance σ2 of Pn
demonstrating its convergence but narrow width.

FIG. 3. Collapse of the rescaled probability distribution
AαðPn;αÞ1=α to Pn for different values of α, where Aα is a
normalization factor. The solid line shows a normal distribution
N with the average hni and variance σ2 of Pn. The data were
obtained using the correlation matrix method with the asymptotic
eigenvalues νj [Eq. (10)] and lnl ¼ 3000. We find a perfect
collapse for both integer (supported by the Widom theorem) and
noninteger values of α.

FIG. 1. Scaling of the difference between the Rényi and
accessible entanglement entropy, ΔS2 and H2, with the log of
the variance of Pn, lnðσ2Þ, for subregions up to l ¼ 105

connected sites. The results were calculated using the correlation
matrix method for free fermions in the ground state of H. Inset:
Scaling of σ2 with lnðlcÞ, where lc ¼ ð2N=πÞ sin (πl=ð2NÞ) is
the chord length, highlighting the double logarithmic growth of
the width of the distribution Pn.
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hopping, as well as disordered systems, where contribu-
tions to the entanglement entropy from particle fluctuations
will be further suppressed. It is interesting to speculate on
how the ideas discussed here could be further generalized to
understand the effects of superselection rules on entangle-
ment without resorting to a particular mode bipartition
[59–62].
The functional form of the Rényi generalized accessible

entanglement depends only on the full and particle number
projected reduced density matrices that can be directly
computed by creating copies of a physical system. It is thus
accessible using current simulation [4–8] and experimental
[10,13,14] techniques for both bosons and fermions for
integer α ≥ 2 by histogramming ραA into bins corresponding
to the number of particles n observed in the subregion with
appropriate postselection [29]. The experimental measure-
ment of the Rényi generalized accessible entanglement
entropy and confirmation of its robust scaling in fermionic
systems would, in combination with a protocol for its
extraction and transfer to a register, support such many-
body phases as a potential resource for quantum informa-
tion processing.

We thank P. N. Roy, R. G. Melko, and I. Klich for
insightful discussions and E. Sela for directing our attention
to Ref. [57]. This research was supported in part by the
National Science Foundation (NSF) under Grant
No. DMR-1553991, and a portion was performed at the
Aspen Center for Physics, which is supported by NSF
Grant No. PHY-1607611. A. D. acknowledges the German
Science Foundation (DFG) for financial support via Grant
No. RO 2247/10-1.

[1] C. F. Roos, G. P. T. Lancaster, M. Riebe, H. Häffner, W.
Hänsel, S. Gulde, C. Becher, J. Eschner, F. Schmidt-Kaler,
and R. Blatt, Bell States of Atoms with Ultralong Lifetimes
and Their Tomographic State Analysis, Phys. Rev. Lett. 92,
220402 (2004).

[2] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al
kar, M. Chwalla, T Körber, U. D. Rapol, M. Riebe, P. O.
Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt,
Scalable multiparticle entanglement of trapped ions, Nature
(London) 438, 643 (2005).

[3] P. Calabrese and J. Cardy, Entanglement entropy and
quantum field theory, J. Stat. Mech. (2004) P06002.

[4] M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko,
Measuring Renyi Entanglement Entropy in Quantum
Monte Carlo Simulations, Phys. Rev. Lett. 104, 157201
(2010).

[5] S. Humeniuk and T. Roscilde, Quantum Monte Carlo
calculation of entanglement Rényi entropies for generic
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