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Nematicity in quantum Hall systems has been experimentally well established at excited Landau levels.
The mechanism of the symmetry breaking, however, is still unknown. Pomeranchuk instability of Fermi
liquid parameter Fl ≤ −1 in the angular momentum l ¼ 2 channel has been argued to be the relevant
mechanism, yet there are no definitive theoretical proofs. Here we calculate, using the variational
Monte Carlo technique, Fermi liquid parameters Fl of the composite fermion Fermi liquid with a finite
layer width. We consider Fl in different Landau levels n ¼ 0, 1, 2 as a function of layer width parameter η.
We find that unlike the lowest Landau level, which shows no sign of Pomeranchuk instability,
higher Landau levels show nematic instability below critical values of η. Furthermore, the critical
value ηc is higher for the n ¼ 2 Landau level, which is consistent with observation of nematic order in
ambient conditions only in the n ¼ 2 Landau levels. The picture emerging from our work is that
approaching the true 2D limit brings half-filled higher Landau-level systems to the brink of nematic
Pomeranchuk instability.
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The electronic nematic order first conjectured in the
context of doped Mott insulators [1] has become a common
electronic phase in the field of strongly correlated quantum
matter as more of these systems are found to exhibit the
nematic order. Electronic nematic ordering refers to a
spontaneous breaking of spatial rotational symmetry while
preserving translational symmetry. Nematic ordered sys-
tems exhibit preferential direction, and ordering is often
detected through anisotropy in longitudinal transport [2].
The systems that exhibit nematic order now include under-
doped cuprates, Sr3Ru2O7, half-filled higher Landau-level
states [2], Fe-based superconductors [3], and even the
surface of bismuth [4]. On the one hand, such a ubiquity
implies that the electronic nematic order fits into an over-
arching classification of how strongly correlated electrons
organize themselves. In particular, the ubiquity underscores
the original rationale for electronic liquid crystal phases
based on the observation of frustration between kinetic
energy and interaction energy and also, by analogy, to the
classical liquid crystalline systems. On the other hand, this
ubiquity motivates one to seek a microscopic mechanism of
just how the analogy is realized.
Although the original picture of a nematic order forming

through quantum melting [1] (or impurity driven inhibition
[5]) of a stripe order is intuitively appealing, it has been
difficult to make theoretical progress from this perspective
(beyond phenomenology). Instead, much progress in
understanding the implications of nematic order relied on

the notion of Pomeranchuk instability [6]. Pomeranchuk
pointed out that when a Fermi liquid parameter Fl in the
angular momentum l channel for spin-polarized systems is
less than −1, the Landau Fermi liquid is unstable against
deformation of the Fermi surface in that channel. Should
microscopic interactions amount to F2 < −1, an isotropic
Fermi liquid state would give way to a nematic state
with an elliptically deformed Fermi surface [Fig. 1(a)].
Unfortunately, it is rather challenging to calculate Fermi
liquid parameters from a microscopic Hamiltonian in

(a) (b)

FIG. 1. (a) Deformation of the Fermi surface in the angular
momentum l ¼ 2 (nematic) channel. (b) Filled Fermi sea of
composite fermions and a quasiparticle-quasihole pair configu-
ration with the lowest energy marked in red. Seven other
configurations with the quasihole momentum and the same
kinetic energy are marked in green.
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strongly correlated systems. Hence, past studies put in the
value of F2 ¼ −1 “by hand” as a guarantee for the nematic
ground state [7–11].
Here, we turn to the half-filled Landau levels (HFLLs)

where nematic order may border a non-Abelian quantum
Hall state. Although the lowest Landau level remains
featureless and gapless, at ν ¼ 5=2 (the n ¼ 1 Landau
level) a two-dimensional electron fluid under magnetic
field shows a quantum Hall (QH) plateau that is widely
believed to be associated with the non-Abelian Moore-
Read (MR) QH state [12]. Interestingly, application of an
in-plane magnetic field [13–19] or anisotropic strain [20]
closes the gap, leaving the system in an anisotropic fluid
state. Surprisingly, a recent experiment showed that even
isotropic pressure can drive the ν ¼ 5=2 QH state into a
gapless state with anisotropic transport [21,22]. Moreover,
at fillings ν ¼ 9=2 and higher, gapless anisotropic transport
[23–25] has been interpreted as evidence of electronic
nematic order [26,27].
The observation of nematic phenomena motivated varia-

tional studies comparing energies of candidate states using
the Hartree-Fock (HF) [28,29] or variational Monte Carlo
method [30], as well as exact diagonalization studies
[31,32]. The Hartree-Fock calculations [28,29] found the
single-Slater determinant states with charge density wave
order to have lower energies than the Laughlin-type liquid
states forn ≥ 2. But thenDoan andManousakis [30] showed
that anisotropically deformed composite fermion (CF)
unprojected wave functions representing a nematic state
have even lower energies for n ¼ 2, when the critical value
of the layer “thickness parameter” η is below a critical value.
Exact diagonalization studies in Refs. [31,32] showed that a
ground state of up to 12 electrons in half-filled systems at
n ≥ 2 yields static structure factors that are strongly peaked
at a finitewave vector that decreases with increasingN; such
a gapless state gives way to the MR paired state [12] with
infinitesimal additional pseudopotentials V1 and V3 for
n ¼ 1. Alternatively, there were efforts to investigate the
implications of nematic quantum criticality using quantum
field theory [33,34]. Nevertheless, it has been unclear
whether a simple screened Coulomb interaction potential
can, in fact, drive Pomeranchuk instability spontaneously
and whether higher Landau levels are susceptible to such an
instability. Here, we use awell-establishedmany-bodywave
function for theCFFermi liquid at half-filledLandau level to
numerically evaluate Fermi liquid parameters Fl for the
lowest three half-filled Landau levels (n ¼ 0, 1, 2) using
energy differences between various particle-hole pair exci-
tation configurations [see Fig. 1(b)]. Thereby, we test the
Pomeranchuk instability scenario for CFs under screened
Coulomb interaction.
Awave function describing a filled Fermi sea [35] of CFs

[36] projected into the lowest Landau level was given (in
the spherical geometry) by Rezayi and Read [37]. On a
torus, the analogous state is given by

jΨCFðfkigÞi ¼ det
i;j
½eiki·Rj �jΨ1=2i; ð1Þ

where jΨ1=2ðfkigÞi is the bosonic Laughlin state at half
filling [38], and Ri are the non-commutive guiding-center
coordinates that act within a Landau level, independent of
its index. They satisfy the commutation rule ½Ra

i ; R
b
j � ¼

−iϵabl2
B, where ϵ

ab is the antisymmetric symbol, and lB is
the magnetic length. The set of fkigi¼1;…;Ne

is single
particle “momenta,” where Ne is the number of electrons
in the system. Periodic boundary conditions require that k
satisfy expðik · LaÞ ¼ 1, where La for a ¼ 1, 2 are primi-
tive translation vectors that specify the torus [39]. The set
fkigi¼1;…;Ne

completely characterizes the many-body state
with a total momentum K ¼ P

ifkig=Ne relative to the
allowed values [38]. The exponential factors in the deter-
minant act as translation operators on jΨ1=2i by displacing
the ith particle by da ¼ ϵbakbl2

B. It can be seen that under a
uniform boost of each ki, the above wave function remains
invariant (up to a phase and an overall multiplicative
constant). This property is called K invariance [40–42].
The variational energy of the wave function is lowest if

the set of fkig is compactly clustered. A phenomenological
Hamiltonian that possesses clustering and K invariance
properties was given by Haldane [40],

H0 ¼
ℏ2

2m�Ne

X
i<j

jki − kjj2; ð2Þ

where m� is the effective mass of the composite fermions.
The Fermi liquid parameters of this model are all zero,
except F1 ¼ −1.
The CF wave function ΨCF, however, is computationally

prohibitive to use, particularly for Monte Carlo calculations
because of its explicit antisymmetrization that requires Ne!
operations. Therefore, we use an approximate wave func-
tion defined on a torus, which is analogous to the wave
function in the spherical geometry by Jain and Kamilla
[43]. It was used by Shao et al. [44] to calculate entangle-
ment entropy. For a system with Ne electrons on a torus at
half filling, the total flux through the system is Nϕ ¼ 2Ne.
The CF wave function in the symmetric gauge where the
zeros of the Laughlin state are displaced by the fdigi¼1;…;Ne

is then

FCF ¼ deti;j
n
e−d

�
j zi

Y
kð≠iÞ

σ½zi − zk þ 2ðdj − d̄Þ�
o

× Fc:m:

hX
i

ðzi þ d̄Þ
i
e−
P

i
ziz�i =2; ð3Þ

where zi ≡ ðxi þ iyiÞ=
ffiffiffi
2

p
lB, di ≡ ðdxi þ idyi Þ=

ffiffiffi
2

p
lB, and

d̄≡P
idi=Ne. The center-of-mass term is Fc:m:ðzÞ≡σðzÞ2,

and σðzÞ is a modified Weierstrass sigma function [45]:
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σðzÞ ¼ ϑ1ðκz; τÞ
κϑ1

0ð0; τÞ exp
�
i

ðκzÞ2
πðτ − τ�Þ

�
: ð4Þ

Here,ϑ1 is a Jacobi theta function, κ¼π=L1,L≡ðLxþiLyÞ=ffiffiffi
2

p
lB is the linear complex dimension of the system, with

L�
1L2 − L�

2L1 ¼ 2πiNϕ, and τ≡ L2=L1 is the modular
parameter of the torus [46]. For the present calculations,
we have chosen a square torus [47].
To calculate the expectation value of the Coulomb

interaction in different Landau levels (ignoring Landau-
level mixing), we use a Landau-level-specific Hamiltonian
for ν ¼ 1=2 for n ¼ 0, 5=2 for n ¼ 1, and 9=2 for n ¼ 2:

H ¼
X
q

X
i<j

eiq·ðRi−RjÞṼðqÞL2
n

�
q2

2

�
e−q

2=2; ð5Þ

where LnðxÞ is the Laguerre polynomial of order n [38],
and ṼðqÞ¼1=q, with n¼ 0 for ν ¼ 1=2, n ¼ 1 for ν ¼ 5=2,
and n ¼ 2 for ν ¼ 9=2. However, the Monte Carlo calcu-
lation of the variational energy of this state for high LLs
becomes very noisy and must be regularized. The root of
this ultraviolet behavior can be traced to strong short-range
repulsions that are generated by the Laguerre polynomials
[48]. Fortunately, there is a physical way to regularize the
Monte Carlo integration. We introduce a short-distance
cutoff η by modifying the 1=r dependence of the Coulomb
interactions to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ η2Þ

p
. This form has been proposed

to approximate the effect of finite thickness of the electron
layer [49], where in magnetic length units η is related to the
average width w̄ by η ¼ w̄=2 [49],

ṼðqÞ ¼ e−ηq

q
: ð6Þ

The limit η→0 corresponds to the pureCoulomb interaction.
We compute Fermi liquid parameters as functions of η.
We then use a variational Monte Carlo method to

calculate the Fermi liquid parameters of the Coulomb
interaction in the lowest three half-filled Landau levels
for the CF Fermi liquid state. We follow the technique
employed by Kwon et al. [50], which was used to study the
Fermi liquid parameters of a two-dimensional electron gas.
Starting from a “ground state” of a Fermi sea, withNe ¼ 37
filled momenta clustered around k ¼ 0, we consider
eight different low-lying quasiparticle-quasihole pair
configurations labeled by α ¼ 1;…; 8 [Fig. 1(b)]. We
then evaluate the energy (expectation value of the interact-
ing Hamiltonian) of each of the configurations using
Monte Carlo integration. After parametrizing the energies
of these configurations as a function of angle θα between
the quasiparticle and the quasihole Eα ≡ EðθαÞ, we fit them
to the Fermi liquid energy functional

EðθαÞ ¼ E0 þ ϵp − ϵh −
X
l

fl cos ðlθαÞ; ð7Þ

where E0 is the energy of the ground state, ϵp and ϵh are the
kinetic energies of the quasiparticle and the quasihole, andfl
are the Fermi liquid parameters. Since ϵp and ϵh are chosen to
be equal, the angular dependence is encoded purely in fl.
To test for Pomeranchuk instability, we need to normal-

ize the Fermi liquid parameters Fl ≡ NFfl, where NF is
the “density of states” at the Fermi energy. Nevertheless, all
other Fl’s for l > 1 can be expressed in terms of F1.
Unlike an ordinary Fermi liquid, however, the CF Fermi
liquid wave function ΨCF is explicitly K invariant. By
fixing F1 ¼ −1 [42], we obtain the values of other Fermi
liquid parameters for the composite Fermi liquid.
Our results are summarized in Fig. 2, where F2 in

n ¼ 0, 1, 2 Landau levels are plotted as functions of η. The
error is bound by the machine precision, and the statistical
error from the Monte Carlo calculations is smaller than the
width of the lines.
For the lowest (n ¼ 0) Landau level, no Pomeranchuk

instability (other than l ¼ 1) is found for any value of η. In
higher (n ¼ 1, 2) Landau levels, on the other hand, we find
Pomeranchuk instability in the nematic (l ¼ 2) channel
at critical values of η ¼ ηc defined by F2 ¼ −1: ηc ¼ 0.81
for n ¼ 1 and ηc ¼ 1.64 for n ¼ 2. As Fig. 3 shows,
Pomeranchuk instability in the nematic channel occurs
over a wider range of the phenomenological cutoff param-
eter for n ¼ 2, which is consistent with the experimental
observation of the QH nematic state being limited to n ¼ 2
under ambient pressure. On the other hand, the fact that
n ¼ 1 can indeed show nematic instability for η < ηc ¼
0.81 is significant in light of a recent the observation [21] of
transition between a fractional QH state and a nematic state
at filling factor ν ¼ 5=2.
The corresponding value of η for the quantum well of

width w0 ∼ 1.5lB (or less) used by Samkharadze et al. [21]
using either the model of Ref. [49] or the model of Ref. [51]
puts the system slightly below the critical value ηc for
n ¼ 1. Hence, our results taken at face value predict
nematic instability even under ambient conditions for the

FIG. 2. l ¼ 2 Fermi liquid parameter F2 for three Landau
levels (n ¼ 0, 1, and 2) plotted as functions of η. Stars mark
the critical values of η ¼ ηc which yield F2 ¼ −1 (ηc ¼ 0.81 for
n ¼ 1 and ηc ¼ 1.64 for n ¼ 2).
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system. However, under these conditions, experiments
as well as finite size studies [52], unlike the n ¼ 2 case,
do not show any sign of nematic order at ν ¼ 5=2. The
gapped phase at the 5=2 Landau-level filling preempts
the nematic phase. Unfortunately, the pairing instability
leading to a gapped phase at ν ¼ 5=2 is inaccessible to
our calculation. Nonetheless, it is significant that we
observe a Pomeranchuk instability at ν ¼ 5=2, as it shows
that the broken symmetry phase is, in fact, contiguous to
the paired phase [52]; under slight changes of the inter-
action potential, the l ¼ 2 Pomeranchuk deformation
becomes a relevant perturbation. In the Samkharadze et al.
[21] experiment, hydrostatic pressure drives the instability
to the nematic phase.
We have looked into the possibility of Pomeranchuk

instability in other channels. Interestingly, we find
Pomeranchuk instability only in the l ¼ 2 channel (other
than l ¼ 1, which is required by the K invariance). In
Fig. 3, we plot Fl for l ¼ 1;…; 5 for η ¼ 1.60 < ηc, and
η ¼ 3.00 > ηc, where ηc is the critical value of the cutoff
paramer η, below which F2 < −1 in the n ¼ 2 Landau
level. For η < ηc in Fig. 3(a), F2 < −1 for n ¼ 2, while all
the other Fl > −1 for l > 2. For the lowest two n ¼ 0 and
n ¼ 1 levels for both values of η > ηc, no Pomeranchuk
instability is observed. In both cases, the Fermi liquid
parameters Fl are roughly a decreasing function of l. In all
parameter ranges we have considered, l ¼ 2 is the leading
instability with the most negative Fermi liquid parameter
except l ¼ 1.
The system of 37 electrons used in our calculations is

sufficiently large for the purpose of detecting the
Pomeranchuk instability that favors the nematic phase
[53]. Our system is sufficiently large with a nearly circular
Fermi surface to minimize the energy differences between
particle and hole excitations [54]. However, for finite sizes,
the critical layer width would depend on the details of the
Fermi surface and the geometry of the torus unit cell.

Landau-level mixing, which we have ignored, will pre-
sumably also affect critical widths. None of these effects
appear to be large enough to change our main conclusions.
In summary, we explicitly calculated the Fermi liquid

parameters of a CF Fermi fluid to check for the
Pomeranchuk instability in a given angular momentum
channel indicated by Fl < −1. Ignoring Landau-level mix-
ing, we used a Landau-level-specific Hamiltonian and took
the finite quantum well thickness into account following
Ref. [49]. Our results revealed remarkable trends: (1) both
n ¼ 1 and n ¼ 2 HFLL states exhibit nematic instability
(l ¼ 2 Pomeranchuk instability) below a critical value of
thickness parameters; (2) n ¼ 2 HFLL shows nematic
instability at higher critical thickness leaving a wider range
of thickness parameters for nematic order, whereas the ηc for
n ¼ 1 is below one magnetic length; (3) Fl > −1 for all
l > 2, ruling out all Pomeranchuk instability other than the
nematic instability. These observations are remarkably
consistent with experimental observations of a nematic
QH state being limited to n ¼ 2 HFLL under ambient
conditions in that this HFLL has a much wider range of η
that shows nematic instability than that of the n ¼ 1 HFLL.
Also, our results predict the ν ¼ 1=2 state to be stable against
Pomeranchuk instability. Our findings are qualitatively
consistent with earlier observations of the QH nematic state
that the anisotropic behavior is favored at smaller values of
the thickness parameter [30,32]. Nevertheless, our results
constitute the first explicit demonstration that nematic
Pomeranchuk instability can drive nematic QH states with
isotropic screened Coulomb interactions.
Our finding of nematic instability in the n ¼ 1 Landau

level for η < 0.8 clearly shows that the nematic order is a
contending phase for the ν ¼ 5=2 state. Recent observation
of such a transition driven by isotropic pressure [21]
corroborates this picture.
However, the analysis for the case of 5=2 filling is more

complicated since there could be a competition among
nematic, smectic, and p-wave paired Moore-Read [12]
phases. The energy scale below which the anisotropic
gapless phase has been observed at 5=2 is more than an
order of magnitude smaller than the predictions of HF
approximation [28]. A similar trend appears for the 9=2
filling [2]. To our knowledge, there is no method of
detecting pairing instability from Fermi liquid parameters.
The question as to which of these phases prevails can be
answered by energetic considerations, which is beyond the
scope of this Letter. Finite size calculations show that under
ambient pressure and untilted magnetic field, the paired
phase appears to be dominant [32, 55, 56], in agreement
with experiment.
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FIG. 3. Fermi liquid parameters Fl (a) slightly below the
critical value of η for n ¼ 2 (η ¼ 1.6) and (b) above the critical
value of η for n ¼ 2 (η ¼ 3.0). For larger η, all Fermi liquid
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only the l ¼ 2 channel shows instability.
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