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We consider the effect of coupling between phonons and a chiral Majorana edge in a gapped chiral spin
liquid with Ising anyons (e.g., Kitaev’s non-Abelian spin liquid on the honeycomb lattice). This is
especially important in the regime in which the longitudinal bulk heat conductivity κxx due to phonons is
much larger than the expected quantized thermal Hall conductance κqxy ¼ ðπT=12Þðk2B=ℏÞ of the ideal
isolated edge mode, so that the thermal Hall angle, i.e., the angle between the thermal current and the
temperature gradient, is small. By modeling the interaction between a Majorana edge and bulk phonons, we
show that the exchange of energy between the two subsystems leads to a transverse component of the bulk
current and thereby an effective Hall conductivity. Remarkably, the latter is equal to the quantized value
when the edge and bulk can thermalize, which occurs for a Hall bar of length L ≫ l, where l is a
thermalization length. We obtain l ∼ T−5 for a model of the Majorana-phonon coupling. We also find that
the quality of the quantization depends on the means of measuring the temperature and, surprisingly, a more
robust quantization is obtained when the lattice, not the spin, temperature is measured. We present general
hydrodynamic equations for the system, detailed results for the temperature and current profiles, and an
estimate for the coupling strength and its temperature dependence based on a microscopic model
Hamiltonian. Our results may explain recent experiments observing a quantized thermal Hall conductivity
in the regime of small Hall angle, κxy=κxx ∼ 10−3, in α-RuCl3.
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Non-Abelian statistics is a deep generalization of quan-
tum statistics in two dimensions, in which the final state
depends upon the order in which exchanges of particles—
non-Abelian anyons—are performed [1–3]. In addition to
its fundamental interest, this provides a powerful paradigm
for quantum computing, allowing for fault-tolerant proc-
esses [4,5]. The main platforms in which non-Abelian
topological phases have been sought are the ν ¼ 5=2
fractional quantum Hall effect [1,2], where non-Abelian
anyons are suspected but have not been established, and
hybrid semiconductor-superconductor structures, to which
quantum computing groups are devoting massive efforts [6],
but where confirmation is still awaited.
A third possible route to non-Abelian anyons is via a

quantum spin liquid [7]. In his seminal work [8], Kitaev
presented a spin-1=2 model on the honeycomb lattice with
bond-dependent anisotropy which, in a magnetic field,
realizes a non-Abelian topological phase. This phase hosts
Ising anyons, topologically the same anyon type which is
targeted by the hybrid efforts. A key and general character-
istic of a topological phase is the chiral central charge c,
which characterizes its gapless edge modes. It is directly
measurable as a quantized thermal Hall conductivity, κqxy ¼
πcT=6 (ℏ ¼ kB ¼ 1). A noninteger value is an unambiguous

indicator of a non-Abelian phase, and c ¼ 1=2 for Ising
anyons.
Stimulated by the recognition that Kitaev’s anisotropic

interactions arise naturally in certain strongly spin-orbit
coupled Mott insulators [9,10], mounting efforts have
targeted such systems in the laboratory. There is now
strong evidence that Kitaev interactions are substantial in
several 2D honeycomb lattice materials [11]: α-Na2IrO3

[12], α-Li2IrO3 [13], and α-RuCl3 [14]. While it is clear
that none of these materials are exactly described by
Kitaev’s model, the beauty of a topological phase is its
robustness: once obtained, it is stable to an arbitrary weak
perturbation and its essential properties are completely
independent of the details of the Hamiltonian. Avery recent
experiment [15] presents observations of an apparent
plateau with a quantized thermal Hall conductivity with
c ¼ 1=2 in α-RuCl3 in an applied field of 9–10 T, at
temperatures of 3–5 K. If confirmed, it could be a
revolutionary discovery not only in the non-Abelian con-
text, but also as the first truly unambiguous signature of a
quantum spin liquid phase in experiment. These results
appear to complement recent experiments on quantum Hall
systems which have observed half-integer thermal con-
ductance, but through rather different means [16].
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The α-RuCl3 experiments do, however, present at least
one major puzzle. The thermal Hall angle θH ¼
tan−1ðκxy=κxxÞ ¼ 10−3 is small, i.e., κxx ≫ κxy. This is
incompatible with conduction solely through a Majorana
edge mode. Indeed, in two-dimensional electron gases, a
quantized Hall effect is only observed when the Hall angle
is large. This raises the fundamental question of whether
the thermal Hall effect is different: is quantization even
expected and possible at small Hall angles? We consider
here a universal effective model for an Ising anyon phase, in
which the chiral Majorana edge mode is augmented by
acoustic bulk phonons, which can provide a diagonal bulk
thermal conductivity. Remarkably, we find that not only
does the quantized thermal Hall effect persist in the
presence of the phonons, but it relies upon them. The
ultimate view of the quantized transport is distinctly
different from the usual isolated edge mode picture, and
we predict notable experimental consequences of the
mixing of edge and bulk heat propagation. Our consid-
erations are quite general and we expect that similar physics
applies to thermal transport in other systems with edge
modes, such as topological superconductors and quantum
Hall systems.
We formulate the problem in terms of hydrodynamic

equations describing the energy transport. We consider the
following two subsystems: the phonons, or lattice, located
in the bulk, and denoted with the index “ph”, and the
Majorana fermions, or spins, confined to the edge and
indexed by “f”, as well as a coupling between them. For
simplicity, we assume an isotropic bulk, with the relation

jph ¼ −κ∇Tph; ð1Þ

i.e., the energy current density in the bulk is parallel to the
thermal gradient, with κ a characteristic of the lattice. The
clockwise edge current is that of a chiral fermion with
central charge c ¼ 1=2, i.e.,

If ¼
πcT2

f

12
: ð2Þ

The heat exchange between phonons andMajorana fermions
can be modeled phenomenologically through an energy
current jex between the two subsystems (see the arrows in
Fig. 1). Microscopically, it is due to the scattering events
between edge Majorana fermions and bulk phonons, and is
the rate of energy transfer at the edge per unit length, i.e.,
jex ≡ ð1=LÞð∂E=∂tÞph→f ¼ −ð1=LÞð∂E=∂tÞf→ph, where L
is the length of the edge in evaluating ð∂E=∂tÞph→f [17].
This, in turn, implies that the phonons and Majorana
fermions have not fully thermalized with one another.
Assuming, however, that thermalization is almost complete,
i.e., Tf ≈ Tph, and that the fermions are strictly confined to
the edge, jex can be linearized in the temperature difference
Tph − Tf at the edge,

jex ¼ λðTÞðTph − TfÞ; ð3Þ

where, crucially, λ > 0 is a function of the overall constant
temperature T ≈ Tph;f, and can be parametrized as
λðTÞ ∼ Tα. We will determine α from a phase space analysis
of the scattering events.
Hydrodynamic equations.—We assume our (two-dimen-

sional) system to be a rectangular slab of width Ly and
length Lx ≳ Ly (see Fig. 1), and choose coordinates with
jxj < x0 ¼ Lx=2 and jyj < y0 ¼ Ly=2.
The continuity equation in the bulk in a steady state is

∇ · jphðx; yÞ ¼ 0 which implies the Laplace equation

∇2Tphðx; yÞ ¼ 0: ð4Þ

Energy conservation at the edges gives rise to appropriate
boundary conditions. At the left and right edges, we assume
that only the lattice is coupled to thermal leads and the
phonons have fixed constant temperatures, Tl;r, respectively.
At the top and bottom edges, the current out of the phonon
subsystem must equal the exchange current, hence
�jyphðx;�y0Þ ¼ jexðx;�y0Þ.Moreover, the continuity equa-
tions for the edges imply �∂xIfðx;�y0Þ ¼ jexðx;�y0Þ.
Together these yield, given Eqs. (1) and (2),

κ∂yTphðx;�y0Þ ¼ −κqxy∂xTfðx;�y0Þ: ð5Þ

Note the appearance of the ideal quantized Hall conductivity
κqxy ¼ πcT=6 ¼ πT=12 here, using Tf ≈ T (valid within our
linearized treatment).
Quantization in the infinitely long limit.—For simplicity,

we first solve our hydrodynamic equations in the limit of an
infinitely long system (Lx → ∞). Note that, even for finite
systems with Lx ≫ Ly, this infinitely long limit is expected
to be relevant far away from the left and right edges.

FIG. 1. Temperature maps of our rectangular system with
dimensions Lx and Ly consisting of a phonon bulk (lower
box) and a Majorana fermion edge (upper edge). The phonon
temperatures at the left and right edges are assumed to be fixed as
Tl;r, respectively, due to the coupling of the lattice with the heater
and thermal bath. The black arrows for If along the edge denote
the direction and magnitude of the “clockwise” energy current
associated with the chiral Majorana mode. The white arrows in
the bulk show a stream line of jph. The 3D white arrows for jex
indicate the energy current between the Majorana edge and bulk
phonons. ðΔTÞphH and ðΔTÞfH are the measured “Hall” temper-
ature differences when the contacts are coupled to the lattice or
spins, respectively.
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Since there is translation symmetry in the x direction, the
boundary conditions Tphð�x0; yÞ ¼ Tr;l lead to a uniform
temperature gradient ðdT=dxÞ ¼ limLx→∞ðTr − TlÞ=Lx,
and the phonon and Majorana temperatures must take
the forms

Tphðx; yÞ ¼
dT
dx

xþ T̂ðyÞ þ const;

Tfðx;�y0Þ ¼
dT
dx

xþ const: ð6Þ

Laplace’s equation, Eq. (4), immediately implies that
T̂ðyÞ must be a linear function of y which we write T̂ðyÞ ¼
½ðΔTÞphH =Ly�y. Therefore, from Eq. (5), we get

∂yTphðx; yÞ ¼ −
κqxy
κ

dT
dx

; ð7Þ

since ∂yTphðx; yÞ ¼ ∂yTphðx;�y0Þ ¼ const. From a phe-
nomenological perspective, the total current in the Hall bar
geometry must flow only along x, but Eq. (7) implies that
the phonon thermal gradient is tilted from the current axis
by a small Hall angle of j tan θHj ¼ κqxy=κ ≪ 1.
Next, consider the view of Alice the experimentalist. She

measures the temperature gradients via three contacts, and
assumes for the moment that these measurements give the
phonon temperature (the most reasonable assumption). To
deduce the Hall conductivity, she posits a bulk heat current
satisfying j ¼ −κph;expt · ∇T, and tries to deduce the tensor
κph;expt [the ph (f) superscript means this quantity is
obtained from a measurement of the phonon (Majorana
fermion) temperature]. By measuring the longitudinal
temperature gradient, she obtains κph;exptxx ¼ κ as expected,
and then, imposing jy ¼ 0, she equates the experimentalHall
angle tan θH ¼ f½ðΔTÞphH �=Lyg=ðdT=dxÞ to κph;exptxy =κph;exptxx .
By comparing this equation to the theoretical result inEq. (7),
we immediately recognize that themagnitude of the effective
Hall conductivity (denoted simply as κexptxy in the rest of the
text) is jκph;exptxy j ¼ κqxy; i.e., the experimentally measured
thermal Hall conductivity takes the quantized value.
A few remarks are in order. First, a transverse temper-

ature difference ðΔTÞphH leading to a “Hall thermal gradient”
ðΔTÞphH =Ly ¼ −ðκqxy=κÞðdT=dxÞ develops, which allows us
to compensate the transverse energy current jex at the edges
and leads to a zero net transverse current. Second, the
effective thermal Hall conductivity is only found to be
quantized if the transverse temperature gradient is obtained
from the phonon temperatures at the top and bottom edges.
In contrast, if Bob somehow measures the Majorana
temperatures, the transverse temperature gradient is iden-
tified as ðΔTÞfH=Ly and thus, from Eqs. (3) and (5), he finds
a different effective thermal Hall conductivity [see also
Fig. 2(a)]:

κf;exptxy ¼ −
κðΔTÞfH
Ly

dT
dx

¼ κqxy

�
1þ 2κ

λðTÞLy

�
: ð8Þ

Note that κf;exptxy ≈ κph;exptxy only for a large enough phonon-
Majorana coupling λðTÞ ≫ κ=Ly.
General conditions for quantization.—To understand

how the quantization of the effective thermal Hall conduc-
tivity can break down and determine the range of its
applicability, we now extend the solution of our hydro-
dynamic equations to a finite system with Lx ≳ Ly, where
we must take into account all boundary conditions, i.e.,
include the right and left boundary conditions on top of
those in Eq. (5). Again assuming that the leads are coupled
to the phonons only, those are

Tphð�x0; yÞ ¼ Tr;l;

jexð�x0; yÞ ¼ λðTÞðTph − TfÞ ¼∓ κqxy∂yTf: ð9Þ

Considering a small enough phonon-Majorana coupling λ,
we aim to obtain a perturbative solution of the hydro-
dynamic equations. To this end, we write

Tph;fðx; yÞ ¼ T þ T̃ph;fðx; yÞ; ð10Þ

with T̃ph;fðx; yÞ ≪ T. We express the temperature varia-

tions in series expansions as T̃ph;f ¼ P∞
n¼0 T̃

ðnÞ
ph;f and

assume that terms of increasing order n are progressively
less important. Note also that T̃ph;fðx; yÞ ¼ −T̃ph;fð−x;−yÞ
generally follows from the symmetries of the hydrody-
namic equations. Starting from the λ ¼ 0 solution,

T̃ð0Þ
ph ðx; yÞ ¼ ðdT=dxÞx and T̃ð0Þ

f ðx; yÞ ¼ 0, the temperature
variations can then be found by an iterative procedure. At
each iteration step n > 0, we first solve the ordinary
differential equations [see Eqs. (5) and (9)]

(a) (b)

FIG. 2. (a) Temperature profiles of the Majorana fermions (solid
lines) and phonons (dashed lines) at the top (red lines) and bottom
(blue lines) edges,Tf;phðx;�y0Þ. Themeasured “Hall” temperature
differences ðΔTÞph;fH ðxÞ≡ Tph;fðx; y0Þ − Tph;fðx;−y0Þ are shown
with the black arrows. (b) Measured thermal Hall conductivity
κph;exptxy [Eq. (13)] as a function of the longitudinal position x at
which ðΔTÞphH is measured for dimensionless thermal couplings
λLx=κ

q
xy ¼ 100 (solid line), 10 (dashed line), and 1 (dotted line) at

fixed Lx=Ly ¼ 100.
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κqxy∂xT̃
ðnÞ
f ¼ �λ½T̃ðn−1Þ

ph − T̃ðnÞ
f �; for y ¼ �y0;

κqxy∂yT̃
ðnÞ
f ¼∓ λ½T̃ðn−1Þ

ph − T̃ðnÞ
f �; for x ¼ �x0; ð11Þ

for the Majorana temperature T̃ðnÞ
f along the edge. Then,

using this solution, we obtain an appropriate Laplace

equation ∇2T̃ðnÞ
ph ¼ 0 for the phonon temperature T̃ðnÞ

ph in
the bulk, along with Dirichlet boundary conditions

T̃ðnÞ
ph ð�x0; yÞ ¼ 0 at the left and right edges, and Neumann

boundary conditions

∂yT̃
ðnÞ
ph ¼ � λ

κ
½T̃ðnÞ

f − T̃ðn−1Þ
ph � for y ¼ �y0; ð12Þ

at the top and bottom edges. It is well known that such a
Laplace equation with mixed Dirichlet and Neumann boun-
dary conditions has a unique solution that can be obtained by
standard methods. Our perturbative solution is convergent
whenever λ ≪ κ=Ly (see [18] for the error analysis).
Assuming this condition, we perform the first iteration

step (see [18]) to calculate the phonon temperature T̃ð1Þ
ph

and obtain the effective thermal Hall conductivity in terms
of the transverse temperature difference ðΔTÞphH ðxÞ [see
Fig. 2(a)]:

κph;exptxy ðxÞ ¼ −
κ

dT
dxLy

½T̃ð1Þ
ph ðx; y0Þ − T̃ð1Þ

ph ðx;−y0Þ�: ð13Þ

Note that κph;exptxy ðxÞ generally depends on the position x at
which the temperatures are measured [see Fig. 2(b)].
Indeed, we find that κph;exptxy ðxÞ only takes a quantized
(or even constant) value if Lx ≫ Ly and Lx ≫ l≡ κqxy=λ.
First, an accurate measurement of the thermal Hall con-
ductivity generally requires an elongated system with
Lx ≫ Ly. Second, the system size Lx must be larger than
the characteristic length l associated with the thermal-
ization of the Majorana edge mode (see Table I for a
summary). Indeed, even for Lx ≫ Ly, there are two regimes
for the effective thermal Hall conductivity (see [18]):

κph;exptxy ðxÞ ≈
( πT

12
ðLx ≫ lÞ;

πTðL2
x−4x2Þ

96l2 ðLx ≪ lÞ:
ð14Þ

In the second regime we find that κph;exptxy ðxÞ has a strong
dependence on x and is smaller than κqxy ¼ ðπ=12ÞT by a
factor ∼ðLx=lÞ2 ≪ 1.
Estimation of the spin-lattice thermal coupling λ.—The

phenomenological spin-lattice coupling λðTÞ defined in
Eq. (3) can be obtained microscopically from, e.g., the
Boltzmann equation. We calculate the rate of energy
exchange per unit length jex ¼ ð1=LÞð∂E=∂tÞph→f due to
the scattering at the edge. Comparing to the form in Eq. (3),

we extract λðTÞ ¼ λ0Tα, i.e., the exponent α and the
coefficient λ0.
We consider a coupling at the top edge y ¼ y0 ¼ Ly=2 of

the form

Hint ¼
−igvf
4

Z
dxζðxÞKij∂iujðx; y0ÞηðxÞ∂xηðxÞ; ð15Þ

where ηðxÞ, u⃗ðx; yÞ, ζðxÞ are the Majorana edge mode, the
lattice displacement field, and disorder potential, respec-
tively, g parametrizes the spin-lattice coupling, and vf is the
fermion velocity. Kij∂iuj with i, j ¼ x, y is some linear
combination of the elastic tensor for u. Physically, Eq. (15)
may be understood from the observation that the lattice
displacement modifies the velocity of the Majorana edge
mode by affecting the strength of the Kitaev coupling.
Using Eq. (15) and calculating the energy transfer rate

using a Boltzmann equation, we obtain a large power α ¼ 6.
The reason for the large exponent is twofold. First, the
dispersions of both bulk phonons and edge Majoranas are
linearwhich reduces the low energy phase space. Second, the
vertex necessarily involves two gradients: one because
ηðxÞηðxÞ ¼ δð0Þ is a c-number for Majorana fermions,
and another because the strain tensor includes a gradient.
We note that, without disorder, two-phonon processes are
necessary to satisfy kinematic constraints in the physical
regime, where the velocity of the acoustic phonon vph is
larger than vf. In that case one obtains an even larger α ¼ 8.
To estimate the coefficient λ0, we further assume that the

averaged disorder potential satisfies hζðxÞζðx0Þidis ¼
ζ2δðx − x0Þ, and consider an isotropic acoustic phonon
mode only. From the Boltzmann equation solution (see
[18]), we obtain

λ ¼ g2ζ2

32ð2πÞ3v4phv2fρ0
fT6; ð16Þ

where ρ0 is the mass density of the lattice. In the model
we consider f ¼ 4.2 × 104. Unfortunately, at this time an
accurate quantitative estimate of λ for α-RuCl3 is not

TABLE I. Values of the effective thermal Hall conductivities
extracted by measuring the temperatures of the phonon (κph;exptxy )
or Majorana (κf;exptxy ) subsystems in three coupling regimes,
defined by the value of λ relative to λf ¼ κqxy=Lx and
λph ¼ κ=Ly. The three coupling regimes can also be identified
by comparing the system dimensions Lx, Ly to the characteristic
lengths l ¼ κqxy=λ and κ=λ.

Coupling regime Weak Intermediate Strong

λ ∼ Tα λ≲ λf λf ≪ λ ≪ λph λph ≪ λ
Lx Lx ≲ l Lx ≫ l
Ly Ly ≪ κ=λ Ly ≫ κ=λ

κph;exptxy κph;exptxy ≪ κqxy κqxy κqxy

κf;exptxy Ref. [19] κf;exptxy ≫ κqxy κqxy
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possible due to the lack of knowledge of microscopic
details of g, vf, and ζ. However, crudely applying Eq. (16),
we estimate the characteristic length l ¼ κqxy=λ to be
several orders of magnitude larger than the lattice spacing
at temperatures of a few kelvins. Importantly, due to the large
exponent α, we expect that upon lowering the temperature of
the sample l grows rapidly and that the system enters the
regimewhereLx ≪ l inEq. (14) and thus the quantization of
the thermal Hall conductivity breaks down.
Summary and discussion.—By carefully analyzing the

interplay between the chiral Majorana edge mode of an
Ising anyon phase and the energy currents carried by bulk
phonons, we have demonstrated that the thermal Hall
conductivity of such a non-Abelian topological phase
can be effectively quantized in the presence of a much
larger longitudinal thermal conductivity. This is in accor-
dance with recent experiments on α-RuCl3 [15]. However,
this quantization only survives under certain conditions.
The main results are summarized in Table I.
In words, those results are as follows. The quantization

survives for a sufficiently strong spin-lattice coupling
λ ≫ λf ≡ κqxy=Lx, while it immediately disappears in the
weak-coupling regime defined by λ≲ λf [see Fig. 2(b)].
Importantly, since λ ∝ Tα is strongly dependent on the
temperature, with α ≥ 6 for the mechanisms considered in
this work, we predict that the observed quantization of the
thermal Hall conductivity should eventually break down as
the temperature is lowered.
Even within the range of quantization (λ ≫ λf), we can

identify two separate regimes, depending on how λ com-
pares to λph ≡ κ=Ly ≫ λf. In the strong-coupling regime,
defined by λ ≫ λph, the spins and the lattice share the same
temperature, and the quantization of the thermal Hall
conductivity follows from effectively having a system with
a diagonal conductivity κexptxx ¼ κexptyy ¼ κ of the phonons
and an off-diagonal κexptxy ¼ κqxy of the Majoranas.
Surprisingly, however, in the intermediate regime defined
by λf ≪ λ ≪ λph, the thermal Hall conductivity appears to
be quantized despite a large temperature mismatch between
the spins and the lattice. This is only true, however, if it is
obtained by measuring the lattice temperatures along the
edge. If one could directly measure the local temperature of
the Majorana edge mode, it would appear to give a much
larger thermal Hall conductivity.
Finally, we emphasize that our hydrodynamic equations

are applicable far beyond the scope of the present work.
Here, by solving them, we obtained a wide range of
experimentally measurable quantities, such as detailed
temperature profiles of various degrees of freedom (e.g.,
spins and lattice) across the system. However, due to their
phenomenological nature, the hydrodynamic equations we
derived should readily extend to a rich variety of chiral

topological phases and thus may find applications far away
from the field of quantum spin liquids.
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