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We present results on tagged particle diffusion in a mesoscale lattice model for sheared amorphous
material in athermal quasistatic conditions. We find a short time diffusive regime and a long time diffusive
regimewhose diffusion coefficients depend on system size in dramatically different ways. At short time, we
find that the diffusion coefficient, D, scales roughly linearly with system length, D ∼ L1.05. This short time
behavior is consistent with particle-based simulations. The long-time diffusion coefficient scales like
D ∼ L1.6, close to previous studies which found D ∼ L1.5. Furthermore, we show that the near-field details
of the interaction kernel do not affect the short time behavior but qualitatively and dramatically affect the
long time behavior, potentially causing a saturation of the mean-squared displacement at long times. Our
finding of a D ∼ L1.05 short time scaling resolves a long standing puzzle about the disagreement between
the diffusion coefficient measured in particle-based models and mesoscale lattice models of amorphous
plasticity.
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Many systems in condensed matter physics [1], includ-
ing pinned contact lines [2,3], charge density waves [4],
dislocations in crystals [5–7], disordered magnets [8],
and others exhibit bursty, intermittent relaxation during
avalanches when slowly driven. One may ask how the
avalanches give rise to spatial correlations of activity on
longer times corresponding to the operation of many
successive individual avalanches. For instance, for the
case of pinned lines, the geometry of the front evolves
according to the Family-Vicsek scaling laws [9], and it is
natural to ask whether similar scaling laws govern long-
time patterns of activity in related avalanching systems.
In this Letter, we study these long-time correlations in
a mesoscale model for a sheared amorphous solid. Many
different materials can exist as amorphous solids.
Examples include amorphous metallic alloys [10], emul-
sions [11,12], microgel suspensions [13], confined granu-
lar packings [14], etc.
Over the past few decades, the notion of local shear

transformations has been used to describe and explain
the plastic flow of amorphous solids [15,16]. A class
of mesoscopic lattice models is built on this picture
[17–29], (see Nicolas et al. [30] for a recent review).
In these lattice models, the system is partitioned into local
regions, and any one of them may undergo a yielding
event if loaded beyond some threshold. These models are
designed to operate at a mesoscopic scale, slightly coarser
than the particles, but not at a macroscopic scale where
continuum thermodynamic models describe phenomena
such as persistent shear localization [16,31,32].

Avalanches of local shear transformations are observed
in both particle-scale [33–36] and mesoscale models
[19,20,28,29,37,38] during slow steady shear. The cascades
are caused by the elastically mediated redistribution of
stress after a local yielding event [15,21,39]. The result is a
broad spectrum of bursts of plastic activity [10] and fractal
patterns of accumulated plasticity [40]. Similar avalanching
behavior is observed in many different dynamically critical
systems [41–46].
Despite the quantitative agreement in the spectrum of

avalanche sizes and the qualitative agreement in the spatial
correlations in the plastic strain [18], one major discrepancy
between particulate and mesoscale models has remained.
It involves the diffusion coefficient, D, of the motion of
tagged particles. Lemaître and Caroli [47] argued that the
spatial correlations in the plastic strain field should give rise
to a dependence ofD on the system length, L. In quasistatic
simulations of a Lennard-Jones glass, Maloney and
Robbins [48] showed that D ∼ L. In a lattice model,
Martens et. al. [22], found a very different scaling,
D ∼ L1.5. Nicolas and co-workers [24] then showed that
including the effects of advection changes the D ∼ L1.5

scaling and suggested including advection was necessary to
obtain agreement with particulate models. However, very
little quantitative reconciliation has been done between
the mesoscale and particulate models even for this case of
advection.
To shed light on these inconsistencies, we have per-

formed an extensive set of simulations of a simple athermal
quasistatic mesoscopic lattice model. We find a short time
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regime where D ∼ L1.05, and a long time regime where
D ∼ L1.6. The short time diffusive plateau ends after a
characteristic time Δγ� ∼ L−1.05, characterizing the strain
released in a system spanning event, which shrinks with
system size. This reconciles the D ∼ L1 results of refer-
ence [48] with the D ∼ L1.5 results of Refs. [22,24]. The
crossover to the long time D ∼ L1.6 regime occurs at a size
independent strain of order unity. Further, we show that the
kurtosis of the displacement distribution decays with the
size of the time window in the same way as in atomistic
simulations and argue that this is a generic consequence of
the fact that the displacement field is built from temporally
uncorrelated shot noise with the spatial structure of each
shot being a characteristic system spanning avalanche.
The basic approach of the lattice models goes back to

Eshelby who showed that the linear elasticity problem in
which a local region undergoes a shift, εp, in its reference,
stress-free configuration, is given by an integral convolu-
tion: σαβðrÞ ¼

R
Ke

αβμνðr − r0Þεpμνðr0Þdr0 where Ke is the
so-called Eshelby kernel. Lattice models of amorphous
plasticity then add a dynamical rule for the evolution of εp.
One of our goals in this study was to develop a simple
discretization of the Eshelby problem on a lattice which
gives realistic displacements and compatible strains near
the lattice site undergoing plasticity. Our approach is
detailed in the Supplemental Material [49], but briefly:
(i) we define our lattice model by partitioning space into
square domains; (ii) we define the strain on each square
via a finite difference of a displacement field defined on
the vertices of the square, and (iii) the response, σ, to an
increment of εp ona single square—i.e., theEshelbykernel—
is expressed analytically as a Fourier series on the square
lattice and tabulated in real space for each lattice size, L.
This discretization scheme is similar to that used in studies of
Martensitic transformations [50,51] and to a scheme used
recently in an amorphous lattice model by Nicolas [52].
At long distances, the shear component of this kernel gives
the far-field solution of the Eshelby inclusion problem [39],
and its shear component features a quadrupolar symmetry,
i.e., in polar coordinates Ke

xyxyðr;θÞ∝cosð4θÞ=r2.
In this Letter, we focus on two modes of shear with

respect to the underlying lattice, εxx ¼ −εyy ¼ ε, εxy ¼
εyx ¼ 0 which we call mode 2 and εxy ¼ εyx ¼ ε, εxx ¼
εyy ¼ 0 which we call mode 3. We assume the elastic
constants have the Lamé form so that, in either case,
σ ¼ 2μεe, where εe is the elastic strain. We work in units
where 2μ ¼ 1 so that we can speak interchangeably of σ or
εe. Denoting spatial averages with hi, hσi, and hσ=2μþ εpi
would be the stress and strain of the sample measured by a
load cell. As we will show below, despite residual corre-
lations at long time in mode 2, the short time behavior of
modes 2 and 3 in terms of the displacement and strain
statistics and the avalanche spectrum (not studied here) is,
essentially, indistinguishable.

We have studied different flavors of the model, charac-
terized by different ways of introducing disorder and
advancing the simulation in time. For the stochastic
ingredients, we have studied (i) random local stress thresh-
olds, σy, with uniform increments in local plastic strain, εp,
and (ii) random increments in εp with uniform σy. For the
dynamical rule, we have used (i) an extremal protocol,
where the total strain εt ¼ εe þ εp is adjusted uniformly
across the system at each step so that precisely one site is at
threshold [17], and (ii) a synchronous protocol where all
unstable sites are updated simultaneously while hεti is held
fixed, and this procedure is iterated at the same hεti until all
sites become stable before εt is incremented again. We have
checked that the scaling exponents we define below do not
depend on either the stochastic model or dynamical update
rule, although nonuniversal properties may. The data we
present here are for the case of random εp increments with
uniform σy and for the synchronous update protocol. We
choose each local increment of εp from a uniform dis-
tribution from 0 to ε0 (ε0 ¼ 1). ε0 is then the only nontrivial
adjustable parameter in the model [18,53].
In Figs. 1(a) and 1(b), we show the steady-state variance,

hδε2pi, of the plastic strain field scaled by the length of the
time window, Δε, as a function of Δε for various system
lengths, L, in mode 2 (a) and mode 3 (b) loading. For short
times (small Δε), both modes of loading show a consistent,
size independent, diffusion constant. We can make an
ab initio estimate for the height of the plateau by assuming
the probability distribution of local plastic strains is simply
the uniform distribution corresponding to sites which have
yielded precisely once plus a residue at zero corresponding
to sites which have not yet yielded. This ab initio estimate
gives a value of 2=3 which is in excellent agreement with
the measured plateau height. At later times, sites will
eventually undergo more than one yielding event, and this
estimate will break down.
There is a fall off from the plateau, starting at a strain of

order 0.5 (regardless of L) at which point each site has
yielded approximately once on average. Beyond this fall
from the plateau, the two loading modes show dramatically
different behavior. The mode 2 curves all drop sharply.

(a) (b)

FIG. 1. Variance, hδε2pi, of the plastic strain field for a given
interval of applied strain, Δε, scaled by Δε for various system
length, L, in (a) mode 2 and (b) mode 3 loading.
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Each curve has a shoulder feature beyond which hδε2pi
saturates and hδε2pi=Δε ∼ 1=Δε. The shoulder extends to
longer Δε for larger L. In mode 3, after a subdiffusive
regime, the curves again approach a diffusive plateau (with
a lower diffusion constant than at short time), with the
larger systems having a lower long-time diffusion constant.
This behavior for mode 2 and mode 3 is consistent with
Ref. [20] where it was argued that the presence of null
modes in the convolution operator (and associated stress-
free slip lines) was necessary for hδε2pi to remain diffusive.
In Fig. 2, we show the diffusion coefficient, D ¼

hδu2i=Δε, of the displacement field scaled by L1.05 vs
Δε=L−1.05. This rescaling by L1.05�0.05 collapses the data
onto a short-time master curve which has the same shape
for both loading modes. For short times, there is a diffusive
plateau. As Δε increases, the curve departs upward,
superdiffusively, from the plateau. This superdiffusive
regime sets in at a characteristic time scale when:
Δε�=L−1.05 ≈ 0.5. To explain the scaling with L, we recall
and generalize the arguments of Ref. [48] which were
motivated by Ref. [47]. In Fig. 3, we plot the incremental
stress field in mode 3 loading for several consecutive
nonoverlapping time windows of a size corresponding to
the end of the lower plateau in Fig. 2 at the initial stages of
the superdiffusive regime. Similar features are observed
for the other loading mode but rotated by 45 degrees. The
plasticity is organized into line-like features (either vertical
or horizontal) which correspond to the directions where Ke

is large and positive.

Suppose the Δεp field for a typical time window at short
time is either zero, if there has been no plasticity, or
composed of a perfect line spanning the simulation cell, if
there has been plasticity. On average, each site on the line
has Δεp ¼ ε0=2. Since there are L=a such sites in the line,
the whole line will globally relieve a strain precisely equal
to: εs ¼ aε0=2L (where a is the lateral size of a square
element of the lattice). The displacement field, us, asso-
ciated with that slip line is a linear profile with a strain equal
to aε0=2L so that (assuming, for the sake of argument,
a horizontal slip line centered at y ¼ 0) usxðx; yÞ ¼
2aðy − L=2Þε0=2L.
The variance of this displacement field is hus

2i ¼
a2ε20=12 which is independent of L. The rate at which
these slip lines occur per unit strain, N=Δε, has to be
precisely enough so that, on average, Δhεpi ¼ Δε so
N ¼ Δε=εs ¼ 2ðL=aÞðΔε=ε0Þ. If we are in a short time
regime so that, at most, one of these slip lines has formed,
then we have: hδu2i=Δε ¼ Nhus

2i=Δε ¼ ðL=6Þε0a. So
the simpleminded picture of elementary lines predicts a
short-time characteristic strain, εs ¼ ε0=2L and a short-
time D ¼ ðL=6Þε0a2.
In Fig. 2, we see that the ε� ∼ L−1,D ∼ L1 scaling is only

approximately correct and that scaling ε by L−1.05 and D
by L1.05 gives a better quality data collapse for both mode 2
and mode 3 loading. We can explain this by slightly
generalizing the argument above. If we imagine the
short-time windows contain either no plasticity or a
characteristic elementary event, then we still have that
hu2i=Δε ¼ Nhus

2i=Δε where N=Δε is still the rate of
events and hus

2i is still the variance of a characteristic
event. We still must have balance between applied strain
and plastic strain so that N ¼ Δε=εs, but now εs is the
characteristic strain associated with an arbitrary character-
istic event more general than a straight line: εs ¼
nsða=LÞ2ε0=2 where ns is the number of sites involved in
one of the elementary events. For lines, ns ¼ ðL=aÞ1, while
we generalize and let ns ¼ AðL=aÞα for fractal objects. So
for the characteristic strain associated with an elementary
line-like object, we have εs ¼ AðL=aÞα−2ε0=2. Finally, for
the diffusion, we have hu2i=Δε ¼ 2ðL=aÞ2−αhus

2i=ðAε0Þ.
We must assume that the elementary events produce dis-
placement fields whose variance is independent of L, but
given that assumption, we see that D ∼ L2−α and εs ∼ Lα−2.
From our scaling collapse, we conclude that 2 − α ¼ 1.05
which would correspond to a fractal dimension of
α ¼ 0.95� 0.05.
In Fig. 4, we, again, plot the diffusion coefficient D vs

the strain ε, but now with D scaled by L1.6 to collapse the
upper plateau at long time. We see a crossover to the upper
plateau at a strain of order unity regardless of L. This
occurs after the departure of hε2pi from its short time
plateau. The mode 3 case displayed in Fig. 4(b) remains
perfectly diffusive for as long as we can simulate, and we

(a) (b)

FIG. 2. Diffusion coefficient, D ¼ hδu2i=Δε, of the displace-
ment field scaled by L1.05 as a function of ðΔεÞL1.05 for (a) mode
2 and (b) mode 3.

FIG. 3. Mode 3 incremental stress field for several consecutive
(nonoverlapping) strain windows of size Δε ¼ 1=ð2LÞ for
L ¼ 128 such that, on average, in each window, there are
L shear transformations. This corresponds to a Δε for which
D has just risen above the lower plateau in Fig. 2.
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have no reason to believe it will do otherwise. The mode 2
case shown in Fig. 4(a) shows a strikingly different
behavior. For any finite L, the mean square displacement
eventually saturates andD decays like 1=Δε at long enough
Δε. Despite this decay, we observe the emergence of an
apparent upper plateau before the decay even for mode 2 at
sufficiently large L. Furthermore, the height of the plateau
seems to obey the L1.6 scaling as well. The emergence of
the upper plateau in mode 2 appears to be related to the
spectral gap in the Eshelby convolution operator disappear-
ing in the L → ∞ limit [20]. For sufficiently large systems,
there will be little difference between mode 2 and mode 3
loading, despite the lack of zero modes of the Eshelby
convolution operator in the former, as long as Δε remains
below the onset of decay.
In Fig. 5, we plot the kurtosis, K, of the distribution of

the ux (a) and ux45 ¼ ðux þ uyÞ=
ffiffiffi
2

p
(b) Cartesian compo-

nent of the displacement versus Δε for mode 3. Both plots
show a striking initial K ∼ 1=Δε behavior as observed
earlier in Lennard-Jones glasses [54,55]. This can be
explained as follows. Suppose the displacement field is
built up from a succession of characteristic events which
are spatially uncorrelated with each other. Consider a
timescale Δε during which it is unlikely to observe more
than one event. Then, a typical window of duration Δε
contains either one event (with probability Δε=ε�) or no

event (with probability 1 − Δε=ε�) where ε� is the char-
acteristic strain release in the event. So any particular
moment of the distribution should scale like hδuni ∼ Δε,
and, for the kurtosis, hδu4i=hδu2i2 ∼ Δε=Δε2 ¼ 1=Δε
which is precisely what we see and explains the much
earlier atomistic results from Tsamados et al. [54,55]. At
long times, we recover K ≈ 3, an indication of a Gaussian-
like distribution. One might have naively expected the
kurtosis data for different system sizes to collapse when Δε
is rescaled by the characteristic strain, ε�, which was found
above, in the analysis of the diffusion coefficient, to scale
like ε� ∼ L1.05. However, we find the best collapse for the
kurtosis is when Δε is scaled by L0.8�0.05. This discrepancy
between the characteristic strain inferred from the diffusion
coefficient (the second moment of the displacement dis-
tribution) and from the kurtosis (involving both the second
and fourth moments) remains an outstanding puzzle.
To summarize, we have shown that lattice models for

athermal quasistatic amorphous plasticity show good
agreement with particle-based simulations for the system
size dependence of the short-time diffusion coefficient.
This is for two different stochastic prescriptions for the
local energy landscape: random threshold or random plastic
strain increment; two different dynamical update rules:
synchronous or extremal; and two different orientations of
the loading with respect to the lattice. Our results are also in
agreement with Maloney and Robbins [48] who showed
that the variance of the local strain field shows little size
dependence, while the variance of the displacements shows
dramatic size dependence.
At longer times, the diffusion coefficient shows a size

dependence, De ∼ L1.6 which is extremely close to the
De ∼ L1.5 observed in Ref. [22]. In this long time regime,
the behavior is different for the two different modes of
loading. When loading along the axes of the lattice, the
discretized Eshelby kernel has no null modes, so the
variance of the plastic strain and, thus, the variance of
the displacements, saturates. When loading 45 degrees
away, the Eshelby kernel has proper null modes—perfect
slip lines along the lattice axes which leave the stress field
uniform, so the variance can continue to grow and the
system can achieve a proper diffusive limit in agreement
with earlier arguments by Tyukodi et al. [20]. We note that,
even in the axial-load case where there are no perfect null
modes of the kernel, a pseudodiffusive plateau develops at
the very latest times. The extent of the pseudodiffusive
plateau depends on system size with larger sizes maintain-
ing a quasidiffusive regime for a longer period of time, but a
precise study of the long-time diffusive behavior is left for
future work.
The picture we put forward here of a separate early time

diffusive regime crossing over to a distinct late time
diffusive regime clarifies the apparent discrepancy between
particle-based and lattice-based models. In particular, it
appears that the introduction of advection discussed in

(a) (b)

FIG. 4. Diffusivity D scaled by L1.6 as a function of ðΔεÞ for
(a) Mode 2 and (b) Mode 3.

(a) (b)

FIG. 5. Kurtosis of the PðuxÞ (a) and Pðux45Þ (b) distributions
for mode 3. Mode 2 is indistinguishable from mode 3 after
interchange of ux45 and ux.
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Ref. [24] is not necessary to recover the linear size scaling
of the correlations observed in atomistic simulations. In
light of our present work, it seems likely that a De ∼ L1

regime was already present in former advection-free lattice
models based studies, but that this early diffusive regime
was simply not analyzed. Of course, at very late times,
advection should be important for a detailed comparison
with particle-based simulations.
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