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Using linear response theory within the random phase approximation, we investigate the propagation of
sound in a uniform two dimensional (2D) Bose gas in the collisionless regime. We show that the sudden
removal of a static density perturbation produces a damped oscillatory behavior revealing that sound can
propagate also in the absence of collisions, due to mean-field interaction effects. We provide explicit results
for the sound velocity and damping as a function of temperature, pointing out the crucial role played by
Landau damping. We support our predictions by performing numerical simulations with the stochastic
(projected) Gross-Pitaevskii equation. The results are consistent with the recent experimental observation
of sound in a weakly interacting 2D Bose gas both below and above the superfluid Berezinskii-Kosterlitz-
Thouless transition.
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In classical hydrodynamics, sound is a density wave that
propagates due to collisions between particles. In super-
fluids, the situation is more complex. If collisions are strong
enough to ensure local thermalization, Landau’s two-fluid
hydrodynamics predicts the existence of two sounds, first
and second sound [1–7], the latter being very sensitive to the
value of the superfluid density. If temperature is low enough
(T ≪ Tc), density waves propagate due to coherence and
interaction and, in a weakly interacting Bose gas, they take
the form of Bogoliubov sound [8]. Density waves have been
observed in harmonically trapped 3DBose gases atT ∼ 0 [9]
and at finite temperature [10]. Very recently, measurements
of sound propagation have become available also in a
uniform 2D Bose gas [11]. Such a system is of particular
interest since, in two dimensions, the velocity of second
sound is predicted to vanish with a finite jump at the
Berezinskii-Kosterlitz-Thouless (BKT) phase transition
[12]. In fact, while in three dimensions the superfluid density
of a dilute Bose gas can be directly related to the condensate
fraction [8,13], in two dimensions it remains finite even if
Bose-Einstein condensation is ruled out by the Hohenberg-
Mermin-Wagner theorem [14,15]. The BKT phase transition
is of infinite order [16–18] and does not show any disconti-
nuity in the thermodynamic quantities [19], but the super-
fluid density exhibits a universal jump, with a consequent
discontinuity of the speed of second sound [12]. However,
the experiment of Ref. [11] does not reveal the occurrence of
any jump in the sound velocity, whose value is found to
remain finite above Tc and significantly smaller than the one
expected for the first (adiabatic) sound.
The key issue for understanding these observations is

the role of collisions, which would be essential for the

application of two-fluid hydrodynamics. In the quasi-2D
regime of Ref. [11], where the frequency of the transverse
harmonic confinement is such that ℏωz ≫ kBT, the colli-
sional rate is given by Γcoll ¼ ℏng̃2=m [20], where n is the
2D density, g̃ ¼ mg2D=ℏ2 ¼ ffiffiffiffiffiffi

8π
p

a=lz is the dimensionless
coupling constant, as is the s-wave scattering length, and
lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
. In Ref. [11], the collisional rate is of the

same order of the frequency of the excited mode, deter-
mined by the box length, and this clearly suggests that
collisions are not efficient enough to ensure the collisional
hydrodynamic regime. Hence one needs a theory that can
describe density waves in the absence of collisions and,
above Tc, even in the absence of superfluidity.
An appropriate starting point consists of combining the

Boltzmann transport equation with linear response theory.
In fact, from a self-consistent formulation of the Boltzmann
equation in the absence of the collisional term, one can
derive the random phase approximation (RPA) expression
[5,21]

χðk;ωÞ ¼ χ0ðk;ωÞ
1þ g2Dχ0ðk;ωÞ

; ð1Þ

for the dynamic response function per particle of a 2D Bose
gas, where χ0ðk;ωÞ is the response function of a non-
interacting Bose gas. At low temperature, RPA is known to
be equivalent to Bogoliubov theory. In particular, at T → 0,
one has χ0ðk;ωÞ ∼ ð−nℏ2k2=mÞ=½ðℏωÞ2 − ðℏ2k2=2mÞ2�,
and the poles of χðk;ωÞ coincide with the Bogoliubov
dispersion relation ℏω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2k2g2Dn=mþ ðℏ2k2=2mÞ2

p
.

In the same regime, the formalism is well suited to
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investigate the thermodynamic functions at equilibrium. At
finite temperature, Eq. (1) accounts for Landau damping
and for the role of interactions at the mean-field level. It is
worth mentioning that, in three dimensions and at temper-
atures higher than Tc, the value of the coupling constant
should be multiplied by 2 as a result of exchange effects
(see Sec.13.2 in Ref. [8]); however, in a weakly interacting
2D Bose gas, these effects are expected to remain small
even at T ≳ Tc because density fluctuations tend to be
suppressed by the persistence of a degenerate quasicon-
densate, provided T remains smaller than the degeneracy
temperature T� ¼ 2πℏ2n2D=ðmkBÞ [21,25–27], and, con-
sequently, we do not include the factor 2 in our analysis.
Even though RPA ignores quantum fluctuations associated
with the critical region near Tc, it can nevertheless serve as
a first description of the dynamic behavior of the gas in the
absence of collisions.
In the long wavelength (small k) limit the response

function χ0ðk;ωÞ of the ideal Bose gas takes the simplified
form

χ0ðk;ωÞ ¼
Z

d2p
ð2πℏÞ2

∂f0
∂px

1

ω=k − px=mþ iδ
; ð2Þ

with δ → 0þ, where f0ðpÞ ¼ ½eðp2=ð2mÞ−μIBGÞ=ðkBTÞ − 1�−1 is
the Bose distribution function of the 2D ideal Bose gas and
the chemical potential μIBG is fixed by the normalization
condition n ¼ ð2πℏ2Þ−2 R d2pf0ðpÞ. At small k, the
response function only depends on the dimensionless
velocity u ¼ ðω=kÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=ð2kBTÞ
p

. Expression (1) satisfies
the f-sum rule χðk;ω → ∞Þ ¼ −nk2=ðmω2Þ, and the long
wavelength limit of the static polarizability χðk → 0;
ω ¼ 0Þ ¼ n2κT [28] (compressibility sum rule) leads to
the following result for the isothermal compressibility of
the gas:

κT ¼ m
2πℏ2n2

1

½e−μIBG=ðkBTÞ − 1� þ g2Dm=ð2πℏ2Þ : ð3Þ

The isothermal compressibility κT is expected to play an
important role in characterizing the dynamic behavior of
the gas in the collisionless regime, differently from the
adiabatic compressibility κS, which instead describes the
propagation of sound in the collisional regime. In particu-
lar, using these two quantities one can define the isothermal
sound velocity cT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðmnκTÞ
p

and the adiabatic sound
velocity cS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðmnκSÞ

p
. It is thus useful to check the

quality of the RPA prediction for κT by comparing it with
other many-body approaches. In Fig. 1 we show the
prediction of Eq. (3) (solid line), together with the
theoretical results obtained from the universal relations
of Refs. [25,26,29] (black circles). For the value g2D ¼
0.1ℏ2=m used in the figure, the critical temperature, defined

as in Ref. [25], is Tc ¼ 0.12T�. The RPA curve is in
qualitative agreement with the universal relations, but
underestimates the maximum near the critical temperature,
where quantum fluctuations, neglected in RPA, have
significant effects.
We also calculate κT from the equilibrium solutions of a

stochastic (projected) Gross-Pitaevskii equation (SGPE). In
this approach, all states of the system lying below a certain
energy cutoff are described by a classical function Ψ
[30,31] obeying a Gross-Pitaevskii equation where dis-
sipation and stochastic fluctuations are included. The
energy cutoff is chosen in such a way that the mean
occupation number of states below the cutoff is larger than
1. The equilibrium at a given T is ensured by coupling Ψ
with the incoherent (sparsely occupied) states above the
cutoff acting as a thermal bath. Given the stochastic nature
of the model, the physical observables are obtained by
averaging over many noise realizations. Using this theory,
we calculate the equation of state for equilibrium configu-
rations of a 2D Bose gas at different temperatures and we
use it to extract the isothermal compressibility [21]. As
shown in Fig. 1, though SGPE includes fluctuations within
an approximate scheme, it reproduces the peak of κT near
Tc in quantitative agreement with the universal relations of
Refs. [25,26].
In order to calculate the speed and damping of density

waves from the RPA expression (1), inspired by the
experimental procedure, we first consider the gas at
equilibrium in the presence of a weak, spatially periodic,
stationary potential, producing a sinusoidal density modu-
lation with a given wave vector k. Then, if the external
potential is suddenly removed, the density starts oscillating
with a time dependent amplitude given by [32,33]

FIG. 1. Dimensionless isothermal compressibility as a function
of temperature for g2D ¼ 0.1ℏ2=m. The blue solid line and the red
squares correspond to κT calculated with the RPA expression (3)
and with SGPE, respectively. The error bars of the SGPE data
represent the statistical uncertainty of the average over different
noise realizations. The black dots are the results obtained from the
universal relations of Refs. [25,26].

PHYSICAL REVIEW LETTERS 121, 145302 (2018)

145302-2



F ðtÞ ¼ 1

πn2κT

Z
∞

−∞
dω

χ00ðk;ωÞ
ω

eiωt; ð4Þ

where the signal is normalized to its t ¼ 0 initial value,
fixed by the isothermal compressibility. If the ratio
χ00ðk;ωÞ=ω exhibits a narrow peak, as happens at low
temperature, then the oscillation will persist for a long time;
if instead the same function is broad, then the oscillation is
strongly damped. Hence the function F ðtÞ provides direct
information on the velocity of sound and on its damping. In
the upper panel of Fig. 2 we show a typical profile of the
function χ00ðk;ωÞ=ω calculated from Eq. (1) with g2D ¼
0.16ℏ2=m at T ¼ 1.2Tc. The figure reveals the occurrence
of a peak at ω ≠ 0, which is at the origin of a damped
oscillatory behavior in the Fourier transform F ðtÞ, shown
in the lower panel. By using

FDHOðtÞ ¼ e−Γt=2
�
cosðω̃tÞ þ Γ

2ω̃
sinðω̃tÞ

�
ð5Þ

as a fitting function [34] we can estimate the velocity of
sound, c ¼ ω̃=k, and its damping rate Γ [35]. The resulting
velocity c is shown in Fig. 3 (solid line) as a function of T,
in units of the zero temperature Bogoliubov sound velocity
c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Dn=m

p
; the curve is close to the prediction for the

isothermal sound velocity cT determined by the isothermal
compressibility (dashed line). The adiabatic sound velocity
cS, which describes the propagation of sound in the
collisional regime, is not shown in the figure and lies well
above cT (cS=cT ∼ 2 near Tc). It is worth noticing on
passing that the oscillatory behavior of the function F ðtÞ is
caused by the interaction term in the denominator of
χðk;ωÞ. In fact, in the ideal Bose gas (g2D ¼ 0), the
function χ00ðk;ωÞ=ω has a peak at ω ¼ 0 and its Fourier
transform (4) is a monotonically decreasing function
(dashed line in Fig. 2).
The propagation of density waves at finite temperature

can also be numerically simulated with SGPE. To this
purpose, consistent with the RPA calculations, we suddenly
remove an external static sinusoidal perturbation and let the
gas evolve in time. Simulations are performed in a
rectangular box with periodic boundary conditions. The
wave vector of the excited mode is fixed by the box size by
k¼2πnx=Lx, and we typically use Lx¼40 and nx ¼ 1, 2, 3.
The initial state is an equilibrium configuration prepared
with SGPE at a given T and then the real time evolution is
performed with a (projected) GPE for the classical field
only, by removing the coupling with the incoherent states
above the cutoff [31,36,37], and averaging over many
realizations. We then extract the values of c and Γ by using

FIG. 2. Upper panel: Imaginary part of the inverse frequency
weighted response function, χ00ðuÞ=u, calculated in the RPA at
T ¼ 0.15T� ¼ 1.2Tc, with g2D ¼ 0.16ℏ2=m, as a function of the
dimensionless frequency u ¼ ðω=kÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=ð2kBTÞ
p

. Lower panel:
Fourier transform (4), as a function of the dimensionless time
t̃ ¼ kt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
. The blue solid and green dashed lines corre-

spond to the interacting and ideal gas, respectively. The red dotted
line is the fit based on Eq. (5).

FIG. 3. Sound velocity in units of c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Dn=m

p
for

g2D ¼ 0.1ℏ2=m. The blue solid line is the sound velocity
c ¼ ω̃=k extracted from the Fourier transform Eq. (4) of χ00=ω
calculated in RPA, while the blue dashed line is the isothermal
sound velocity cT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðmnκTÞ
p

, within the same theory. Solid
and open squares represent the sound speed extracted from
real time simulations and the isothermal sound velocity, respec-
tively, both obtained with SGPE. The error bars arise from
statistical fluctuations; below Tc they are of the same order of
the marker size.
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expression (5) as a fitting function for the amplitude of the
observed density oscillations. The same speed c is found,
within the statistical uncertainties, from a linear fit to the
mode frequency ω̃ðkÞ obtained in simulations with different
nx. The results are shown in Fig. 3 as solid red squares,
while the open squares represent the isothermal sound
velocity cT, with κT taken from equilibrium solutions of
SGPE. The figure shows that both RPA and SGPE predict a
sound velocity which remains roughly constant near Tc and
reasonably close to the isothermal velocity cT ; the discrep-
ancy between cT calculated with RPA (dashed line) and
SGPE (empty squares) is consistent with the difference
between the corresponding values of κT in Fig. 1.
In Fig. 4 we compare our results with the experimental

observations of Ref. [11]. In the upper panel we show the

sound velocity calculated using RPA (solid line) and SGPE
(red squares), while black circles are the experimental
results. Theory and experiments reasonably agree both
below and above Tc. Below Tc, our predictions for the
velocity of the collisionless sound are close to the ones for
second sound based on Landau’s two-fluid hydrodynamics
(dashed green line). This is not surprising since, for a
weakly interacting Bose gas at temperatures larger than
g2Dn2D=kB, the velocity of second sound is well approxi-
mated by the expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðns=nÞ=ðmnκTÞ
p

[12] and differs
from the isothermal velocity only by the multiplicative
factor

ffiffiffiffiffiffiffiffiffiffi
ns=n

p
, which is fixed by the superfluid fraction and

is ∼0.7 near Tc. Conversely, neither our theoretical sound
velocity nor the experimental one exhibit the jump to zero
at Tc, which would be predicted by two-fluids hydro-
dynamics in the collisional regime [12,38].
The lower panel shows the quality factor Q ¼ 2ω̃=Γ. By

increasing the temperature,Q decreases as the damping rate
becomes quickly large. Above Tc, damping becomes so
strong that the oscillatory behavior is hardly visible. Again,
there is an overall good agreement between theory and
experiments. In RPA, the behavior of Q is the consequence
of Landau damping, i.e., the coupling between the collec-
tive sound oscillation and the (thermally populated) single-
particle excited states included in the ideal Bose gas
response (2) (see also Ref. [39] for similar results). In
SGPE, the same mechanism is accounted for by the
dynamical coupling between excited states described by
the classical field below the cutoff energy. This is con-
firmed by the independence ofQ on frequency, as shown in
the inset of Fig. 4; in fact, if damping were collisional, it
would exhibit a quadratic increase with ω and hence a
pronounced frequency dependence of the quality factor.
In conclusion, our theoretical predictions, based on

the random phase approximation and on the stochastic
(projected) Gross-Pitaesvkii equation, strongly support the
interpretation of the recent experimental results of Ref. [11]
in terms of the propagation of sound in the collisionless
regime. The signatures of this sound have been explored by
looking at the time evolution of the system after the sudden
removal of a spatially periodic perturbation. Our work
reveals that collisionless sound can propagate both below
and above the BKT transition, as a consequence of the
interaction between particles.
An issue that remains to be explored concerns the

development of a theory for second sound which includes
superfluid effects also in a collisionless regime (see, e.g.,
Ref. [3]). Another important issue is the crossover between
collisionless and collisional regimes which may be relevant
for more strongly interacting 2D Bose gases, or in larger
boxes. An increase of the collisional rate by a factor of 10 is
likely within the present experimental reach [40]. By
moving towards the collisional regime, one expects to
observe a decrease of damping accompanied by an increase
of the sound velocity above Tc, where it should approach the

700

FIG. 4. Upper panel shows the sound velocity calculated for
g2D ¼ 0.16ℏ2=m. Black circles: experimental data of Ref. [11];
blue solid line: RPA; red squares: SGPE; green dashed line:
second sound predicted by Landau’s two-fluids hydrodynamics
[12,38]. Lower panel shows the quality factor Q ¼ 2ω̃=Γ. The
blue solid line is Q evaluated from the Fourier transform F in
RPA; black circles are experimental data [11]; red squares are the
results of SGPE simulations, obtained by averaging over simu-
lations done at different values of excited frequency (see inset).
The inset shows Q as a function of frequency at different values
of T from SGPE; from top to bottom: T=Tc ¼ 0.29, 0.52, 0.75,
1.02. The error bars of the SGPE data in both panels represent the
statistical deviations due to different noise realizations.
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adiabatic sound velocity cS. One also expects to observe the
jump of second sound at Tc and its conversion, above the
transition, into a diffusive mode, which would significantly
contribute to the isothermal compressibility sum rule [28].
These studies would complement the investigation of sound
propagation in strongly interacting Fermi gases [41,42],
where collisional hydrodynamics is expected to dominate.
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