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Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders
in the Dimensional Regularization Parameter
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We compute systematically for the planar double box Feynman integral relevant to top pair production
with a closed top loop the Laurent expansion in the dimensional regularization parameter &. This is done by
transforming the system of differential equations for this integral and all its sub-topologies to a form linear

in &, where the & part is strictly lower triangular. This system is easily solved order by order in the
dimensional regularization parameter e. This is an example of an elliptic multiscale integral involving
several elliptic subtopologies. Our methods are applicable to similar problems.
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Introduction.—The physics of heavy elementary par-
ticles like the Higgs boson, the top quark, or the W and Z
bosons plays an important role at the LHC and future
colliders. Precision particle physics at these colliders relies
crucially on our abilities to perform higher-order perturba-
tive calculations and, in particular, on our abilities to
compute the relevant Feynman integrals. The method of
differential equations [1-9] has been used successfully for
many Feynman integrals that evaluate to multiple polylogar-
ithms [10-14]. For a large number of scattering processes
with massless particles this is sufficient. However, as soon as
massive particles enter the game, it is known that starting at
two loops multiple polylogarithms will not be sufficient to
express the Feynman integrals. The simplest example of a
Feynman integral not expressible in terms of multiple
polylogarithms is the two-loop sunrise integral with equal
nonzero internal masses [ 15-34]. This integral is related to an
elliptic curve and can be expressed to all orders in the
dimensional regularization parameter ¢ in iterated integrals
of modular forms of T'; (6). Integrals, which do not evaluate
to multiple polylogarithms are now an active field of study in
particle physics [35-52] and string theory [53-58].

In this Letter we report on a more involved computation.
We consider the planar double box integral relevant to top-
pair production with a closed top loop. This integral enters
the next-to-next-to-leading order (NNLO) contribution for
the process pp — ff. Up to now, it is not known analyti-
cally. The existing NNLO calculation for this process uses
numerical approximations for this integral [59,60]. Our
inability to compute this integral analytically has been a
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show stopper for further progress on the analytical side. In
this Letter we show how to compute analytically this
integral. Our methods are applicable to similar problems.

The planar double box integral depends on two scales
(e.g.,s/m?*and t/m?, where s and  are the usual Mandelstam
variables and m the mass of the heavy particle). It involves the
sunrise graph as a subtopology. Therefore, we do not expect
this integral to evaluate to multiple polylogarithms. Phrased
differently, we expect to see elliptic generalizations of
multiple polylogarithms. An obvious question is: Which
elliptic curve? To some surprise, there is not a single elliptic
curve associated to this integral, but three different ones. We
show in this Letter how to extract the elliptic curves from the
maximal cuts of the (sub-) topologies. From these elliptic
curves we obtain their periods.

In the next step we bring the system of differential
equations to a form linear in &, where the &° part is strictly
lower triangular. We introduce kinematic variables x and y,
which rationalize the square roots in the polylogarithmic
case (i.e., for = m?). The transformation of the basis of
master integrals is not rational in x and y; however we find a
transformation which is rational in x, y, the periods of the
three elliptic curves, and their y derivatives. Note that a
system of differential equations linear in e, where the &°
part is strictly lower triangular, can be easily transformed
to an e form (i.e., without any &° part) by introducing
primitives for the terms occurring in the & part. Both
systems are equivalent and both are easily solved order by
order in the dimensional regularization parameter ¢. For the
case at hand the required primitives are usually transcen-
dental functions. We prefer to work with a system linear in
&, where in the transformation matrix only the periods and
their derivatives occur as transcendental functions.

There are two interesting cases, where the solution for
the Feynman integrals simplify: for ¢ = m? the solution
degenerates to multiple polylogarithms, for s = co the
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FIG. 1. The planar double box. Solid lines correspond to

massive propagators of mass m, dashed lines correspond to
massless propagators. All external momenta are out going and on

shell: p? = p3 =0 and p} = p; = m*.

solution degenerates to iterated integrals of modular forms
for 'y (6).

The integral.—We consider the planar double box
integral shown in Fig. 1. This integral is relevant to the
NNLO corrections for ¢z production at the LHC. In Fig. 1
the solid lines correspond to propagators with a mass m,
while dashed lines correspond to massless propagators.
All external momenta are out going and on shell. The
Mandelstam variables are defined as usual,

s = (p1 + p2)% t=(p2+ p3)* (1)

We are interested in the dimensional regulated integral
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where yr denotes the Euler-Mascheroni constant, D =
4 —2¢ denotes the dimension of space-time, and the
propagators are given by

Py =—(ki +p)* +m?,  Py=—ki+m?
Py=—(ki+py+p)*+m>  Py=—(k +k)*+m?,
Ps=—k3, Pg=—(ky+ps+ps)’

Py = —(ky + p3)* +m?. 3)

This integral has a Laurent expansion in &:

o0
_ } : i 7(7)
ID1”2V3V47/5’/6V7 - 811”11/2”3”41/5%”7‘ (4)
J=Jmin

In this Letter we present a method to systematically compute
the jth term of the e expansion. The result is expressed in
terms of iterated integrals [61]. If w, ..., @, are differential
one forms on a manifold M and y:[0, 1] - M a path, we

P2~ _
57~
1 _—— P34
_-76
P~
FIG. 2. A subtopology leading to the square root

write for the pull back of w; to the interval [0, 1],
The iterated integral is then defined by

Iy<a)1, ...,(l)k;ﬂ) =

A L) A " dafa(ia)... /) " dfi ). (6)

Multiple polylogarithms are iterated integrals, where all
differential one forms are of the form

di
= . 7
w} /1_6'] ( )

If f(7) is a modular form, we simply write with a slight abuse
of notation f instead of 2zifdz in the arguments of iterated
integrals.

The  kinematic  variables  for  the  multiple
polylogarithms.—The Feynman integral is a function of
two kinematic ratios, say s/m?> and t/m?. A significant
fraction of the subtopologies depends only on s/m?, but not
on t/m*. These integrals are expressible in terms of
multiple polylogarithms and their system of differential
equations can be transformed to an ¢ form. This introduces
square roots, which are absorbed by a change of kinematic

variables. The square root /—s(4m? —s) is typical for
massive Feynman integrals; however there are also sub-

topologies, which lead to the square root \/—s(—4m? — s)

(note the sign in front of 4m?). An example is shown in
Fig. 2. A transformation, which absorbs both square roots
simultaneously is given by

This defines the variables x and y. The variable y is not
needed for integrals depending only on s/m?. For the
integrals depending only on s/m? we introduce five
differential one forms
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Then all subtopologies, which depend only on s/m?, can be
expressed as iterated integrals with letters given by these
five differential one forms. From Eq. (9) it is clear that they
are expressible in terms of multiple polylogarithms.

Elliptic curves.—Let us consider an elliptic curve
defined by the quartic equation

Ew?=(z-2z)(z—2)(z—z3)(z—24). (10)
We set
Zy = (20— 21)(24 — 73)

Z, = (23 — 22)(24 — 21),
Zy = (23— 21)(24 — 22), (11)

and define the modulus and the complementary modulus
k===, ks =—==. (12)

Our standard choice for the periods is

4K (k
v, = (1 ) Yr = T (13)

VA z

where K(x) denotes the complete elliptic integral of the
first kind. For the double box integral we have to consider
three elliptic curves E (@, E®) and E(©), which occur for the
first time in the three Feynman graphs shown in Fig. 3.
The equations of the elliptic curves are extracted from the
maximal cuts of these Feynman integrals [62—69], specifi-
cally from the maximal cuts of

Lioo1001 (2 — 2¢), 112001 (4 = 2¢),

For these three integrals, the elliptic curves are most easily
obtained from the loop-by-loop approach in the Baikov
representation [67]. We find for all three curves

Lyoor111(4 — 2¢).
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FIG. 3.
curves.

The Feynman graphs associated to the three elliptic

(15)

It is easily checked by computing the j invariants that the
three curves are not isomorphic. However, the curves E(*)
and E(©) degenerate to curve E@ in the limit s — co.

Associated to the curve E(@ are modular forms of T';(6).
We set

_ e -De-9) v\
" 2 y—r z )’
1 ll/(a) n
pos === 009 (M) g
T
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FIG. 4. A subtopology with an additional relation.
Relevant to the problem is the set

{1,920: 921 920+ 93,1+ P3.0+ 940+ 9415 949+ Pao» Par }-  (17)

These are modular forms of I';(6) in the variable 74 =

z//(za)/ (61//5")), which we may substitute for the variable y.

Master integrals and differential equations.—In order to
derive the system of differential equations we first used
REeDUZE [70], KiRA [71], and FIRE [72] for the integral
reductions. Taking trivial symmetry relations into account,
all programs give 45 master integrals. However, the
reductions disagree for the three most complicated topol-
ogies. For a given set of master integrals / we obtain the
system of differential equations

—

dl = A(e,x,y)l. (18)

In general, this system is not yet linear in ¢, but it should
satisfy the integrability condition

dA=AAA. (19)

At first sight, the results of two of three programs above fail
the integrability check. Still, all three programs correctly
implement the Laporta algorithm [73]. However, the
Laporta algorithm does not guarantee that all relations
among the Feynman integrals are found. Here, we have an
example where one additional relation exists in the sub-
topology shown in Fig. 4. This additional relation reduces
the number of master integrals in this topology from 5 to 4.
Imposing this relation, the results from REDUZE, KIrRA, and
FIRE agree and the integrability condition is satisfied. In
addition, we verified numerically the first few terms in the
& expansion of this relation. The extra relation comes from
an IBP identity of a higher sector (i.e., the topology
1y,0,00,0500,)» Where the coefficients of the integrals of
the higher sector are 0. We would like to add that REDUZE
is able to find the relation and can be forced to use this
relation with the command distribute_external [74].

In this Letter we are interested in the integral 7;;;{11;-
With the help of the methods from Ref. [9] we may
decouple two integrals in the top topology. Thus we have
to consider a system of 42 master integrals for 71113

Under a change of basis
J=uI, (20)
the differential equations transform into

di =AJ, A =UAU"'+UdU'. (21)
The main result of this Letter is that there exists a trans-
formation U, such that

-

dJ = (A9 (x,y) + AV (x, )], (22)

and A is strictly lower triangular (i.e., Ag.)) =0forj>i).
The system of differential equations is linear in ¢ and easily
solved order by order in € in terms of iterated integrals. The
transformation matrix is rational in

ex .yt oyl ol o o). (23)

We constructed this matrix by analyzing the Picard-Fuchs
operators in the diagonal blocks [9] and by using a slightly
modified version of the algorithm of Meyer [75,76] for the
nondiagonal blocks. To give an example, the three master
integrals in the topology 7, ,,,.,,00., can be taken as

1+x*)? =

— v L2001
x(1=x?) WE}’)

Joy =€

(1+x%) vy
Js=e(1-2 1 Rosou oy,
5 =¢( E)x(l—xz) 1001 + Ros4 = = Jo4

6 (WY 4 ON:
Ja6 (Wl)]24‘|'R26,24<Wl > Jos

Ceomiw? dy K
&2 q/(b)
54 (y* — 30y —27) #D_Iloolom, (24)

where Rys 54 and Ry, are rational functions in (x,y), D~

denotes the dimension shift operator D — D — 2, and W§h>
the Wronskian

WO =y Pou® —yPou®. (@)

As in the sunrise sector [40], one integral is divided by a
period (J,4), while a second integral is given as a derivative
plus additional terms (Jyg). This pattern applies to all
elliptic sectors.

The matrix A© in Eq. (22) vanishes forx =0ory = 1.
The occurrence of € terms in the differential equations is
expected from the study of the sunrise integral with unequal
masses [29,33]. For y = 1 the entries of A() reduce to the
differential one forms of Eq. (9), for x = 0 they reduce to
the modular forms of Eq. (17). The solution reduces
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therefore to multiple polylogarithms for y =1 and to
iterated integrals of modular forms for x = 0. We have
compared numerically the solutions of all master integrals
with results from sector_decomposition [77] and found
agreement. Albeit the transformation U significantly sim-
plifies the system of differential equations, the length of
the solution still exceeds the format of this Letter. The
definition of the master integrals, the differential equation,
and the results are given in the Supplemental Material [78].
In addition, a longer publication [79] describes the details
of our calculation.

Conclusions.—In this Letter we analyzed the planar
double box integral relevant to top pair production with
a closed top loop. This integral depends on two scales and
involves several elliptic subsectors. This integral has not
been known analytically and impedes further progress on
the analytic computation of higher-loop Feynman integrals
with massive particles. In this Letter we reported that we
may transform the system of differential equations to a
form linear in &, where the £ term is strictly lower
triangular. With such a linear form the solution in terms
of iterated integrals is immediate. Our techniques open the
door for more complicated Feynman integrals.
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