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The emergence of nonequilibrium phenomena in individual complex wave systems has long been of
fundamental interest. Its analytic studies remain notoriously difficult. Using the mathematical tool of the
concentration of measure, we develop a theory for structures and fluctuations of waves in individual
disordered media. We find that, for both diffusive and localized waves, fluctuations associated with the
change in incoming waves (“wave-to-wave” fluctuations) exhibit a new kind of universality, which does
not exist in conventional mesoscopic fluctuations associated with the change in disorder realizations
(“sample-to-sample” fluctuations), and originates from the coherence between the natural channels of
waves—the transmission eigenchannels. Using the results obtained for wave-to-wave fluctuations, we find
the criterion for almost all stationary scattering states to exhibit the same spatial structure such as the
diffusive steady state. We further show that the expectations of observables at stationary scattering states
are independent of incoming waves and are given by their averages with respect to eigenchannels. This
suggests the possibility of extending the studies of thermalization of closed systems to open systems, which
provides new perspectives for the emergence of nonequilibrium statistical phenomena.
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Recent studies on the foundations of equilibrium
statistical mechanics [1–7] have shed new light on the
long-standing problem of nonequilibrium phenomena in
individual (quantum) wave systems, where neither fictitious
ensembles nor reservoirs exist [8]. Many of them [3,4] rely
on a conjecture of Berry, i.e., that in closed systems random
scattering can render waves structureless on large spatial
scales [9]. This wave property gives rise to a basic feature of
thermal equilibrium phenomena in individual closed sys-
tems, i.e., spatial homogeneity. Yet, a major topic of non-
equilibrium statistical mechanics is concerned with various
spatial structures in open systems [10–14]. This contrast
motivates exploring in depth spatial structures of waves, i.e.,
scattering states, in individual open systems, which may also
pave a way for extending the studies of the relations between
spatial and entanglement structures in an ensemble of open
disordered systems [15] to an individual member.
In fact, spatial structures and fluctuations of waves in

open disordered media are central topics of mesoscopic
physics [16–20]. However, most theoretical efforts have
been focused on disorder ensembles; the significance of
waves in individual disordered media has been emphasized
only recently [21,22]. The common wisdom of using self-
averaging or the ergodic hypothesis to connect certain
properties of individual disordered media to their disorder
averages [23,24] essentially requires the thermodynamic
limit, and cannot be applied to study fluctuations in
mesoscopic scales. It remains a challenge to construct a
theory for wave statistics in individual mesoscopic systems,

where rich fluctuation phenomena of the wave origin can
be driven, e.g., by changing the incoming wave. Such
wave-to-wave fluctuations differ from well understood
sample-to-sample fluctuations [16–20,23–29]. Their in-
depth studies are of both fundamental and practical
importance. Indeed, in individual mesoscopic systems,
fluctuations and irreversibility have been known to be
closely related [30]. On the other hand, wave statistics in
individual open disordered media have found many optical
applications [31–34].
Recently, the concentration of measure (CM) [35–38] has

been adopted to study statistical phenomena in individual
closed systems [1,39–41]. The CM is rooted in high-
dimensional geometry. The idea can be illustrated by the
unit sphere, for which the area of the sphere becomes more
and more concentrated around the equator as the dimension
increases. Eventually in high dimensions the entire area
almost concentrates around the equator. This property can
then be visualized by real-valued functions over the sphere
with nice continuity properties through their concentration
around some constant value. When the sphere is replaced
by a general high-dimensional geometric body (e.g., the
Euclidean space) and the area measure by others (e.g., the
Gaussian measure), similar results follow. This idea opens
new perspectives of probability theory [36–38]. It allows us
not only to study variables with complicated dependence on
random variables instead of being their sum, but also to
obtain nonasymptotic results. A detailed introduction of CM
is given in section S0 of the Supplemental Material [42].
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In this Letter, we employ CM to explore universal
statistical phenomena of waves in individual open disor-
dered media. We launch a classical wave of circular
frequency Ω and carrying unit energy flux into a finite
medium with N (¼ðΩ=πÞ×the width) channels and length
L [47,48] (Fig. 1). Keeping the disorder realization fixed,
but allowing the incoming wave to vary gives rise to various
wave-to-wave fluctuations. Below, most attentions are paid
to the fluctuations of the spatial structure of scattering state
corresponding to the incoming current amplitude c, i.e., the
depth (x) profile IxðcÞ of energy density integrated over the
cross section. We develop a CM theory of wave-to-wave
fluctuations. Physically, it provides information on a single
stationary scattering state in a single disordered medium
and the differences of behaviors between a disorder
ensemble and an individual member; technically, instead
of traditional impurity diagrams [16,17,20] and field
theories [18,19,28], its key components are various con-
centration inequalities [37] of observables [e.g., IxðcÞ].
By the developed theory we achieve the following

results: (1) we find that, compared to conventional sample-
to-sample fluctuations, wave-to-wave fluctuations exhibit
a number of “anomalies.” In particular, irrespective of
regimes of wave propagation (diffusive, localized, etc.), the
distribution of IxðcÞ is always sub-Gaussian, i.e., has an
(upper) tail decaying at least as fast as a Gaussian tail
[Eq. (6)]. Contrary to this, for sample-to-sample fluctua-
tions of observables such as total transmission, as waves are
more and more localized the distribution tail decays slower
and slower, and the shape of the tail changes dramatically
[18,49]. (2) Furthermore, we find that the wave-to-wave
fluctuations of IxðcÞ are governed by an x-dependent curve
kIxkLip, which arises from the phase coherence between
distinct eigenchannels—the natural channels for wave
propagation in disordered media [50,51]. In contrast, the
sample-to-sample fluctuations of IxðcÞ (c fixed) are gov-
erned by the conductance [52] known to equal the number
of open eigenchannels [53]. For diffusive waves, we find
that the curve is universal with respect to disorder realiza-
tions ω at large N (cf. Fig. 2). (3) We find the criterion
[Eq. (8)] for almost all stationary scattering states to exhibit
the same spatial structure, i.e., a nonequilibrium steady
state, and show that it can be readily satisfied for diffusive
waves. (4) We show that the expectations of generic
observables at stationary scattering states are independent

of incoming waves and given by their averages with respect
to eigenchannels [Eq. (15)], and find the corresponding
criterion. These results apply to both classical and quantum
waves, like Anderson localization [17,18]. In addition,
owing to the nonasymptotic nature they provide new
perspectives for statistics of waves launched into a dis-
ordered medium via few channels [54].
We begin with a general discussion on how the high-

dimensional geometry emerges from the present setting
(Fig. 1), and further provides a basis for applying CM. For
simplicity we consider a two-dimensional (2D) medium.
A disordered dielectric configuration δϵðx; yÞ is embedded
into the air background. So the wave field Eðx; yÞ satisfies
the Helmholtz equation [48],

f∂2
x þ ∂2

y þΩ2½1þ δϵðx; yÞ�gEðx; yÞ ¼ 0: ð1Þ

Given N channel bases, an incoming current amplitude
is a projection represented by N complex coefficients:
ðc1; c2;…; cNÞ≡ c. Since the incoming wave carries a unit
energy flux,

P
N
n¼1 jcnj2 ¼ 1, and all c constitute the unit

sphere S2N−1. Next, we discretize the medium into a lattice
of M points. The M values fωðx;yÞ ≡ −Ω2δϵðx; yÞg con-
stitute the coordinate of the Euclidean space RM: a point in
RM corresponds to a disorder realization ω≡ fωðx;yÞg. As
observables depending on c (respectively ω) define real-
valued functions over S2N−1 (respectively RM), we can
apply CM to them and study wave-to-wave (respectively
sample-to-sample) fluctuations.
Construction of the theory.—We divide the construction

into five steps. In each step we outline the derivations
and present the key results; motivations and (or) physical
implications are also discussed. Technical details and
expanded discussions are relegated to Ref. [42].
Step 1—formulation of the problem.—Below we choose

the eigenchannel [51] introduced in the following as
the basis. The transmission matrix t has matrix elements
ftabg ¼ −i

ffiffiffiffiffiffiffiffiffiffi
ṽaṽb

p hx ¼ ∞ajGjx0 ¼ −∞bi [55], where G is
Green’s function and ṽa is the group velocity of ideal
waveguide mode φaðyÞ (a the mode index). By the singular
value decomposition, t ¼PN

n¼1 un
ffiffiffiffiffi
τn

p
v†n, we obtain a

y

L

c

x

S 2N-1

I  (c)x
ω

M

FIG. 1. In the present setting two high-dimensional geometric
bodies appear: S2N−1 constituted by distinct incoming current
amplitudes c and RM by distinct disorder realizations ω.
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FIG. 2. Using Eqs. (5) and (12), we calculate Lxðc;ωÞ at N ¼
800 for 4 randomly chosen c at fixed ω and for 4 randomly
chosen ω at fixed c, respectively, and calculate kIxkLip for 3 large
N. All profiles collapse into the a single curve. L ¼ 50.
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transmission eigenvalue spectrum fτng and mutual
orthogonal unit vectors fung and fvng. Replacing
x ¼ ∞ in tab by arbitrary x ∈ ½0; L�, we make the extension
t → tðxÞ and obtain a vector field EnðxÞ≡ fEanðxÞg ¼
tðxÞvn. Then (τn; vn; EnðxÞ) defines the nth eigenchannel,
determined completely by ω, Ω [56]. Each channel has a
specific 2D spatial structure: the energy density profile
jEnðx; yÞj2 with Enðx; yÞ ¼

P
N
a¼1 EnaðxÞφ�

aðyÞ. Integrating
y results in a one-dimensional (1D) structure,

WτnðxÞ≡
Z

dyjEnðx; yÞj2 ¼ E†
nðxÞ · EnðxÞ; ð2Þ

with · being a scalar product.
Treating ωðx;yÞ as a potential, we apply the scattering

theory of waves [57] to Eq. (1) and find v̂
1
2
xEðx; yÞ ¼P

N
a¼1½tðxÞc�aφ�

aðyÞ, where c ¼PN
n¼1 cnvn and v̂x≡

ð1 − ∂2
ΩyÞ

1
2 is a scalar operator accounting for the absolute

value of the group velocity in waveguide modes. Thus we
reduce IxðcÞ≡ R dyE�ðx; yÞv̂xEðx; yÞ [58] into [59]

IxðcÞ ¼
XN
n;n0¼1

c�ncn0E
†
nðxÞ·En0 ðxÞ: ð3Þ

Then the problem is the following: For a fixed ω, does
IxðcÞ exhibit universal behaviors when c varies? A natural
idea is to calculate all the cumulants of IxðcÞ and find the
distribution. But, one then needs to calculate an infinite
number of products of E†

n · En0 , and sum up their contri-
butions, which is a formidable task especially for a smallN.
The CM allows a different route, which we follow below.
Step 2—Lipschitz continuity: a building block of CM.—

This is the concept that formalizes the “nice continuity
properties” of real-valued functions mentioned in the
introductory part. Let a generic space C be equipped with
the Euclidean metric k·k. For f∶C → R, if

kfkLip ≡ supz;z0
jfðzÞ − fðz0Þj

kz − z0k < ∞

⇔ jfðzÞ − fðz0Þj ≤ kfkLipkz − z0k; ð4Þ

where “sup” stands for the least upper bound, then fðzÞ is
said to have the Lipschitz continuity or be Lipschitz, and
kfkLip is called the Lipschitz constant. As we will see
below, even though f has a very complicated dependence
on c, its wave-to-wave fluctuations are controlled by a
single parameter, i.e., kfkLip.
Step 3—Concentration inequality for IxðcÞ and results

for general waves.—Now we introduce a result of CM:
Lévy’s lemma [35,40]. Let μ be the uniform proba-

bility measure over S2N−1, and f∶S2N−1 → R be Lipschitz.
Then the probability for the deviation between f and its

mean
R
fdμ to exceed ε is ≤2e−δε

2N=kfk2Lip , where δ is some
positive absolute constant.
This means that f concentrates around

R
fdμ with a rate

increasing rapidly with N=kfk2Lip. We stress that kfkLip
depends on N generally. By the lemma the distribution of f
is sub-Gaussian. But, unlike the central limit theorem, the
lemma does not require the large N limit, i.e., is non-
asymptotic; instead, N can be very small (cf. Fig. 4).
In S1 of Ref. [42] we use Eq. (3) to derive an analytic

expression of the Lipschitz constant kIxkLip of IxðcÞ. The
result reads

kIxkLip ¼ supcLxðc;ωÞ;

Lx ¼ π

 XN
n¼1

�����
XN
n0¼1

c�n0E
†
n0 ðxÞ · EnðxÞ

�����
2

− I2x

!
1=2

; ð5Þ

where Lx depends on c, ω in general. According to Eq. (5),
kIxkLip < ∞. Combined with Lévy’s lemma this gives the
following concentration inequality,

Pr ðjIxðcÞ −Wðx;ωÞj > εÞ ≤ 2e
− δε2N
kIxk2Lip : ð6Þ

Here Wðx;ωÞ≡ R IxðcÞdμ and “Pr” stands for probability.
After simple algebra we reduce Wðx;ωÞ to

Wðx;ωÞ ¼ 1

N

XN
n¼1

WτnðxÞ: ð7Þ

The results of Eqs. (5)–(7) hold for generalN, ω, regardless
of regimes of wave propagation (diffusive, localized, etc.).
From the inequality Eq. (6) we see that provided

Wðx;ωÞ ≫ kIxkLip=
ffiffiffiffi
N

p
; ð8Þ

the wave-to-wave fluctuations of IxðcÞ are negligible and
almost all incoming waves behave in essentially the same
way: their energies are stored in distinct channels with an
equal weight of 1=N and a nonequilibrium steady state
universal with respect to c namely Wðx;ωÞ results, i.e.,
IxðcÞ ≈Wðx;ωÞ. The state does not carry information on
the phase coherence between eigenchannels. The phase
coherence, as shown by the sub-Gaussian tail in Eqs. (6)
and (5), enters into kIxkLip and influences strongly wave-
to-wave fluctuations (see Step 5 for further discussions).
From the inequality [Eq. (6)] we also see that the

distribution tail of IxðcÞ decays at least as fast as a
Gaussian tail. In contrast, in sample-to-sample fluctuations
(c fixed) the distribution tail decays much slower, known
for x ¼ L to be exponential for diffusive waves [52] and
log-normal for deeply localized waves [18,29].
Step 4—Diffusive steady state and its fluctuations.—

Below we use the general results Eqs. (5)–(7) to explore in
depth diffusive waves. Previous numerical studies have
shown that in quasi 1D media [60], the disorder average of
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Eq. (7) gives a diffusive steady state [51], but it is difficult
to (dis)prove analytically that without the averaging this
remains true for general geometry. Indeed, for large N (L
and Ω fixed) the medium is a slab [60] and thus high
dimensional, but in high dimension the explicit form of
WτnðxÞ, even its disorder average, is unknown; for small N,
i.e., a short quasi 1D medium, the impacts of the sample-to-
sample fluctuations on WτnðxÞ have not yet been studied.
We first establish a concentration inequality of Wðx;ωÞ.

To this end we show in S2 of Ref. [42] that, even for a
single disordered slab, distinct structures WτnðxÞ are
described by a single formula [51], which depends
smoothly on τn and was derived originally for an ensemble
of quasi 1D disordered media. Using this fact, we show in
S3 of Ref. [42] that the real-valued function Wðx;ωÞ over
RM is Lipschitz, i.e.,

jWðx;ωÞ −Wðx;ω0Þj ≤ c̃ðxÞN−1
2kω − ω0k: ð9Þ

Here c̃ðxÞ ¼ Oð1Þ; its explicit form is unimportant and
given in Ref. [42]. The property Eq. (9) allows us to use
Pisier’s theorem in CM [35] to show in S4 of Ref. [42] the
following:
Theorem. If ω ¼ fωðx;yÞg is drawn randomly from an

ensemble of disorder realizations with ωðx;yÞ being inde-
pendent Gaussian variables of zero mean and variance σ2,
then the probability for the deviation between Wðx;ωÞ and
its disorder mean E½Wðx;ωÞ� to exceed ε satisfies

Pr ðjWðx;ωÞ − E½Wðx;ωÞ�j > εÞ ≤ 2e
− 2Nε2

ðc̃ðxÞπσÞ2 : ð10Þ

Thus the concentration is strong for large N, i.e.,

Wðx;ωÞ ≈ E½Wðx;ωÞ� ð11Þ

for almost all ω. Importantly, the factor N in the sub-
Gaussian bound of the concentration inequality [Eq. (10)]
comes from the Lipschitz constant of Wðx;ωÞ, i.e., the
coefficient on the right-hand side of the inequality [Eq. (9)].
Noticing that the detailed structures of fWτnðxÞg enter

into the inequality [Eq. (10)] only through the unimportant
factor of c̃ðxÞ, we conjecture that the inequality applies
for small N also. While to prove this conjecture rigorously
is beyond the present work, in S4 of Ref. [42] we confirmed
the conjecture numerically for N being as small as 20.
So Eq. (11) holds for both large and small N. Due to

IxðcÞ ≈Wðx;ωÞ the disorder average of IxðcÞ (c fixed)
E½IxðcÞ� ≈ E½Wðx;ωÞ�. Together with Eq. (11) this gives
Wðx;ωÞ ≈ E½IxðcÞ�. As E½IxðcÞ� is known to be the solution
to the diffusion equation [16,17,20], Wðx;ωÞ is a diffusive
steady state (for almost all ω), which decreases linearly
in x. This result renders the transport mean free path l well
defined for single ω—because for a diffusive steady state

the total transmission WðL;ωÞ ¼ l=L [16]—and identical
to that defined for a disorder ensemble.
Step 5—Wave-to-wave fluctuations in diffusive regime.—

To study these fluctuations we need to better understand
kIxkLip. For large N we calculate Eq. (5) in S1 of Ref. [42]
and obtain

kIxkLip ¼
Z

Lxðc;ωÞdμ ¼ Oð1Þ: ð12Þ

Surprisingly, as shown in Fig. 2, the profiles of kIxkLip at
distinct N collapse into a single curve; moreover, the profile
of Lx is universal with respect to c and ω, and the universal
curve is identical to that of kIxkLip.
This universality of Lx, together with Eq. (12), implies

the universality of kIxkLip with respect to ω. As shown in
S1 of Ref. [42], it even leads to an explicit expression of
kIxk2Lip:

kIxk2Lip ¼
π2

N þ 1

�XN
n¼1

½WτnðxÞ −Wðx;ωÞ�2

þ
XN
n≠n0

����XN
a¼1

E�
naðxÞEn0aðxÞ

����2
�
: ð13Þ

By using Eq. (13) we find in S5 of Ref. [42] that

varðIxÞ ¼ kIxk2Lip=ðπ2NÞ; ð14Þ

and thus includes both incoherent and coherent contribu-
tions of eigenchannels, corresponding respectively to the
first and second term in Eq. (13).
For small N the universality above is violated. But

numerical calculations show that kIxkLip ¼ Oð1Þ still holds
(see the symbols corresponding to N ¼ 20 in the left panel
of Fig. 3). Due to this and Wðx;ωÞ ¼ Oð1Þ, for diffusive
waves, the criterion Eq. (8) can be readily satisfied.

||Ix||Lip

0.0          0.2           0.4          0.6          0.8           1.0
0.0

0.4

0.8

1.2

1.6

2.0

N=400

W(x;ω)

N=20

0.0   0.4   0.8  1.2  1.6   2.0

W(x;ω)

FIG. 3. Simulations show that in a single slab ω the profiles
IxðcÞ for distinct c concentrate around Wðx;ωÞ (right panels),
and the data: ½kIxkLip;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2NvarðIxÞ

p
� (symbols) collapse into a

straight line of unit slope for distinct large N while deviate from
this line for small N (left panel). L ¼ 50.
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Numerical confirmations.—We put the theory into
numerical tests. The methods of numerical experiments
are described in S7 of Ref. [42]. First, we simulate wave
propagation in a single slab for 104 randomly chosen c.
Simulations confirm that the profiles IxðcÞ concentrate
around a linear decrease for both large and small N (Fig. 3,
right panels). This also gives l ¼ 13 for single ω [47].
Moreover, from the distribution pðIxÞ of wave-to-wave
fluctuations, we compute varðIxÞ, and find that the relation
Eq. (14) holds for large N but is violated for small N
(Fig. 3, left panel), as expected by our theory. Second, we
simulate propagation of diffusive and localized waves in
quasi 1D media. We perform the statistics of wave-to-wave
and sample-to-sample fluctuations of Ix. As shown in
Fig. 4, for both diffusive and localized waves the distri-
bution of wave-to-wave fluctuations displays a Gaussian
tail, in agreement with the inequality Eq. (6). In contrast,
the distribution of sample-to-sample fluctuations is much
broader, which is exponential for diffusive waves and
stretched-exponential for localized waves [61].
Our theory provides new perspectives for the long-stand-

ing problem of the emergence of irreversibility in individual
systems. In particular, in S6 of Ref. [42] we study the
expectation:OðcÞ≡ hEjÔjEi ¼Pn;n0c

�
ncn0 hEnjÔjEn0 i of a

generic Hermitian operator Ô at the stationary scattering
state Eðx; yÞ (determined by c), where En ¼ Enðx; yÞ.
Repeating the analysis above we find

OðcÞ ≈ 1

N

XN
n¼1

hEnjÔjEni≡ Ō; ð15Þ

for almost all c, if Ō ≫ kOkLip=
ffiffiffiffi
N

p
. This independence of

observables on the incoming wave resembles thermalization
in closed systems [1–8]. But, as the systems here are open,
conceptual differences exist. Notably, bound states and
equilibrium thermal ensembles in closed systems are
replaced respectively by stationary scattering states and

N−1P
njEnihEnj, which may be called the eigenchannel

ensemble.
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R
IxpðIxÞdIx.

PHYSICAL REVIEW LETTERS 121, 140603 (2018)

140603-5

https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nphys444
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1007/BF01339852
https://doi.org/10.1088/1367-2630/7/1/E01
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1103/PhysRevE.53.4379
http://arXiv.org/abs/1804.00010
https://doi.org/10.1103/RevModPhys.71.313
https://doi.org/10.1103/RevModPhys.71.313
https://doi.org/10.1016/S0370-1573(99)00091-5
https://doi.org/10.1364/OE.17.010466
https://doi.org/10.1364/OE.17.010466
https://doi.org/10.1364/OE.21.010367
https://doi.org/10.1364/OE.21.010367
https://doi.org/10.1103/PhysRevLett.55.1622


[27] Mesoscopic Phenomena in Solids, edited by B. L. Altshuler,
P. A. Lee, and R. A. Webb (North-Holland, Amsterdam,
1991).

[28] A. Kamenev, Field Theory of Non-Equilibrium Systems
(Cambridge University Press, Cambridge, UK, 2011).

[29] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[30] A. V. Andreev, O. Agam, B. D. Simons, and B. L. Altshuler,

Phys. Rev. Lett. 76, 3947 (1996).
[31] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C.

Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601
(2010).

[32] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat.
Photonics 6, 283 (2012).

[33] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R.
Dasari, K. J. Lee, andW. Choi, Phys. Rev. Lett. 109, 203901
(2012).

[34] S. Rotter and S. Gigan, Rev. Mod. Phys. 89, 015005 (2017).
[35] V. D. Milman and G. Schechtman, Asymptotic Theory

of Finite-Dimensional Normed Spaces (Springer, Berlin,
Germany, 1986).

[36] M. Ledoux, The Concentration of Measure Phenomenon
(AMS, Providence, 2001).

[37] S. Boucheron, G. Lugosi, and P. Massart, Concentration
Inequalities—A Nonasymptotic Theory of Independence
(Oxford University Press, UK, 2013).

[38] M. Talagrand, Ann. Probab. 24, 1049 (1996).
[39] S. De Bièvre and P. E. Parris, J. Stat. Phys. 168, 772 (2017).
[40] P. Hayden, D. W. Leung, and A. Winter, Commun. Math.

Phys. 265, 95 (2006).
[41] W. Weiss, G. Benenti, G. Casati, I. Guarneri, T. Calarco, M.

Paternostro, and S. Montangero, New J. Phys. 18, 013021
(2016).

[42] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.140603, which in-
cludes Refs. [43–46].

[43] U. Haagerup and S. Thorbjornsen, Exp. Math. 21, 293
(2003).

[44] A. MacKinnon, Z. Phys. B 59, 385 (1985).
[45] G. Marsaglia, Ann. Math. Stat. 43, 645 (1972).
[46] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,

Integrals and Series (Nauka, Moscow, 1981), Vol. 1.
[47] Throughout this work we require the sample size be much

larger than the transport mean free path l. The latter is
usually defined for a disorder ensemble. As we show in this
Letter, l is well defined for a single disordered medium also,

and is identical to that defined for an ensemble. In S2 of
Ref. [42] we further show that, when N is large, for a single
disordered medium l can also be defined by the transparent
eigenchannel structure Wτ¼1ðxÞ.

[48] The group velocity in the air background is unity. In
simulations all lengths are in unit of the inverse wave
number in the air background.

[49] M. Stoytchev and A. Z. Genack, Phys. Rev. Lett. 79, 309
(1997).

[50] W. Choi, A. P. Mosk, Q. H. Park, and W. Choi, Phys. Rev. B
83, 134207 (2011).

[51] M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, Nat.
Commun. 6, 6893 (2015).

[52] T. M. Nieuwenhuizen and M. C.W. van Rossum, Phys. Rev.
Lett. 74, 2674 (1995).

[53] Y. Imry, Europhys. Lett. 1, 249 (1986).
[54] Y. V. Fyodorov, JETP Lett. 78, 250 (2003).
[55] Here we write G in the representation which is a mixture of

the real coordinate x and the waveguide mode. In other
words, we perform the Fourier transform of hxyjGjx0y0iwith
respect to y, y0.

[56] To make formulae compact we suppress ω and Ω in IxðcÞ
and En throughout.

[57] R. G. Newton, Scattering Theory of Waves and Particles
2nd Ed. (Springer, New York, 1982).

[58] Strictly speaking, the definition of energy density excludes
the scalar operator v̂x. However, we have found that omitting
v̂x in the definition only leads to the appearance of an
irrelevant overall factor.

[59] Note that at x < L the vectors EnðxÞ are not orthogonal in
general.

[60] For a slab the width ≳L while for a quasi 1D medium the
width ≪ L.

[61] For the sample-to-sample fluctuations of IxðcÞ (with the
incoming current amplitude c fixed), we are not aware of
any reports of either the exponential distribution of diffusive
waves (except for the special case of x ¼ L and c chosen to
correpond to a plane wave or a Gaussian beam [52]) or the
stretched-exponential distribution of localized waves.

[62] The localization length is given by Nl [63,64], using which
we obtained the values of localization length in Fig. 4.

[63] O. N. Dorokhov, Zh. Eksp. Teor. Fiz. 85, 1040 (1983) [Sov.
Phys. JETP 58, 606 (1983)].

[64] P. A. Mello, P. Pereyra, and N. Kumar, Ann. Phys. (N.Y.)
181, 290 (1988).

PHYSICAL REVIEW LETTERS 121, 140603 (2018)

140603-6

https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/PhysRevLett.76.3947
https://doi.org/10.1103/PhysRevLett.104.100601
https://doi.org/10.1103/PhysRevLett.104.100601
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1038/nphoton.2012.88
https://doi.org/10.1103/PhysRevLett.109.203901
https://doi.org/10.1103/PhysRevLett.109.203901
https://doi.org/10.1103/RevModPhys.89.015005
https://doi.org/10.1214/aop/1065725175
https://doi.org/10.1007/s10955-017-1834-7
https://doi.org/10.1007/s00220-006-1535-6
https://doi.org/10.1007/s00220-006-1535-6
https://doi.org/10.1088/1367-2630/18/1/013021
https://doi.org/10.1088/1367-2630/18/1/013021
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.140603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.140603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.140603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.140603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.140603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.140603
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.140603
https://doi.org/10.1016/S0723-0869(03)80036-1
https://doi.org/10.1016/S0723-0869(03)80036-1
https://doi.org/10.1007/BF01328846
https://doi.org/10.1214/aoms/1177692644
https://doi.org/10.1103/PhysRevLett.79.309
https://doi.org/10.1103/PhysRevLett.79.309
https://doi.org/10.1103/PhysRevB.83.134207
https://doi.org/10.1103/PhysRevB.83.134207
https://doi.org/10.1038/ncomms7893
https://doi.org/10.1038/ncomms7893
https://doi.org/10.1103/PhysRevLett.74.2674
https://doi.org/10.1103/PhysRevLett.74.2674
https://doi.org/10.1209/0295-5075/1/5/008
https://doi.org/10.1134/1.1622041
https://doi.org/10.1016/0003-4916(88)90169-8
https://doi.org/10.1016/0003-4916(88)90169-8

