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Bryan C. Daniels,1,* Hyunju Kim,2,3 Douglas Moore,3 Siyu Zhou,4 Harrison B. Smith,2 Bradley Karas,3

Stuart A. Kauffman,5 and Sara I. Walker1,2,3,†
1ASU-SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona 85287, USA

2School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA
3Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona 85287, USA

4Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
5Institute for Systems Biology, Seattle, Washington, USA

(Received 3 May 2018; revised manuscript received 21 July 2018; published 28 September 2018)

The hypothesis that many living systems should exhibit near-critical behavior is well motivated
theoretically, and an increasing number of cases have been demonstrated empirically. However, a systematic
analysis across biological networks, which would enable identification of the network properties that drive
criticality, has not yet been realized. Here, we provide a first comprehensive survey of criticality across a
diverse sample of biological networks, leveraging a publicly available database of 67 Boolean models of
regulatory circuits.We find all 67 networks to be near critical. By comparing to ensembles of randomnetworks
with similar topological and logical properties, we show that criticality in biological networks is not
predictable solely from macroscale properties such as mean degree hKi and mean bias in the logic functions
hpi, as previously emphasized in theories of random Boolean networks. Instead, the ensemble of real
biological circuits is jointly constrained by the local causal structure and logic of each node. In this way,
biological regulatory networks aremore distinguished from randomnetworks by their criticality than by other
macroscale network properties such as degree distribution, edge density, or fraction of activating conditions.
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A key and oft-debated concept in the physics of life is the
criticality of living matter [1–6]. Criticality, or tuning to a
point of marginal stability, is hypothesized to drive both the
robustness and evolvability of living processes [7,8].
Systems far from their critical point are expected to be
less adaptive than critical systems, being either too stable to
be responsive in the ordered phase or too unstable to
maintain memory in the chaotic phase. Many examples of
living systems are now known to be poised at the boundary
between these two regimes, with proximity to criticality
reported across a variety of biosystems with very different
functions, such as neural firing, animal motion and social
behavior, and gene regulation [2,9–14]. Yet, despite these
many examples of critical behavior in biology, the true
pervasiveness of criticality across living systems remains to
be illuminated.
Regulatory networks were among the first proposed and

are among the most widely discussed candidates for critical
systems in biology [8]. Evidence that biological regulatory
networks operate near criticality has been so far limited to a
handful of experimental examples, but these are increasing
in frequency. The effects of experimental perturbations of
single genes in Saccharomyces cerevisiae [15,16], the
dynamics of gene expression in the macrophage [17],
and a handful of networks with experimentally derived
network topology [18,19] have been shown to be consistent
with being near criticality. These isolated experimental

cases indeed suggest criticality plays an important role in at
least some biological regulatory networks. However, it is
currently unknown how widespread criticality is across
diverse systems with different structure and function.
Characterizing the ubiquity (or lack thereof) of criticality
would enable the systematic identification of those proper-
ties that give rise to collectively critical states in regulatory
networks. To accomplish this requires a survey of criticality
across a diverse sample of biological regulatory networks,
enabling isolating properties of the ensemble of biological
networks that give rise to criticality. We provide the first
such survey here, revealing that critical states in biological
regulatory networks are ubiquitous and, surprisingly,
the critical states observed in the biological ensemble
differ from naïve theoretical predictions based on random
network ensembles.
To study criticality across diverse regulatory systems, we

use Boolean networks, as these are among the most widely
used models of complex regulation in biology. Their
ubiquity is due in part to their successful approximation
of complex regulatory interactions of genes essential to
cellular function [20–26]. Boolean network models have
successfully predicted cellular behavior including the
robustness of the cell cycle, cell differentiation processes,
and cellular response to DNA damage [27–30]. With few
fine-tuned parameters, Boolean models are simple to build
and simulate, and yet they still capture many important
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dynamical features of the real biological systems which
they model [31]. This has led to a proliferation of Boolean
network models of a wide range of real biological proc-
esses, and researchers can now capitalize on the availability
of such models to identify and study the drivers of
criticality in real biological systems.
For our study, 67 Boolean network models were

obtained from the Cell Collective database [32]. The
networks represent biological processes including virus
and cell cycles, cell differentiation, cell plasticity, cell
apoptosis, cell migration, and signaling pathways, among
other gene regulatory functions. They encapsulate a wide
range of biological processes across humans, animals,
plants, bacteria, and viruses and range in size from five
nodes to 321 nodes. Each of the network models originated
in a specific cited study, with a list of citations provided in
Supplemental Material [33]. Most of the models (63 of 67)
were constructed including interactions gathered from
previously published literature. Some include interactions
inferred from published data (eight networks) or inferred
from data taken explicitly for that model (nine networks).
About one-third of the models (25 of 67) were constructed
or validated using experimental data taken explicitly for
the corresponding study. In total, the networks we study
encompass more than 6500 biological interactions, which
were originally identified in a diverse set of laboratories
using a diverse set of methods, e.g., by investigating
specific pairs of interacting proteins (e.g., [36]) or inferring
interactions from time series data (e.g., [37]).
Before proceeding to present our results analyzing these

networks, it is important to emphasize that observations of
criticality in real systems have so far been primarily
motivated by the theory of random Boolean networks
(RBNs) (e.g., [38–40]). By constructing ensembles of
RBNs with fixed mean in-degree hKi and mean activity
bias hpi, one can readily determine thresholds for criticality
as a function of hKi and hpi for the ensemble. The results
indicate that mean connectivity and mean bias of Boolean
logic functions both play a role in determining criticality.
However, while the ensemble of random networks in these
theoretical studies subsumes those we expect to exhibit a
biological function, the ensemble is not exclusive to living
examples. As we will show, hKi and hpi, as statistical
characterizations of connectivity and logic, are not specific
enough to explain the criticality observed across the
ensemble of networks with biological function.
To infer criticality in the 67 biological networks in our

data set, we use a measure of average sensitivity [41]. This
measure of criticality is related to others such as Derrida
curves [18] and perturbation avalanches [16], but it is
advantageous for this study where we consider large
ensembles of biological and random networks, because
it can be calculated efficiently even for large networks
when all node in-degrees are sufficiently small, as they are
for most existing biological network models (and our

controlled randomizations of them). The average sensitivity
s was defined in Ref. [41] by starting with the Boolean
derivative that measures the number of inputs for which
flipping a bit at time step t changes the value of the output
at time step tþ 1 and then averaging over nodes and over
all possible input states x⃗. Defining the discrete dynamics
as x⃗ðtþ 1Þ ¼ f⃗½x⃗ðtÞ�,

s ¼ 1

N

XN

i

�XN

j

∂fiðx⃗Þ
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�
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: ð1Þ

Here ∂fiðx⃗Þ=∂xj represents the sensitivity of node i to
changing node j when starting in state x⃗ [42]:

∂fiðx⃗Þ
∂xj ¼ fiðx1;…; xj;…; xNÞ ⊕ fiðx1;…; x̄j;…; xNÞ;

ð2Þ

with x̄j representing the logical negation of xj and ⊕
representing the exclusive-OR function. Defined in this
way, the average sensitivity s is the expected number of
nodes whose state is changed at the next time step given an
intervention that flips the state of one node at the current
time step. It is equivalent to the average Hamming distance
between the perturbed and unperturbed state at time tþ 1
when a random bit is flipped at time t (see Supplemental
Material [33]).
The average sensitivity was defined in Ref. [41] to be an

indicator of the critical transition in RBNs from an ordered
to a chaotic phase. In an infinite ergodic system, this
transition happens at s ¼ 1 [43,44]. In the ordered phase
bit-flip interventions have effects that become smaller over
time, while in the chaotic phase these changes grow in time
and spread to affect most of the network [42]. The original
results exploring this damage-spreading transition [42,45]
make this connection analytically under two assumptions:
(i) As in other spreading processes [9], this critical
transition happens when the local measure of spreading
(here, the average sensitivity) is equal to 1 only in the limit
of N → ∞, where finite-size effects of saturation are not
important, and with the assumption of ergodicity [43];
(ii) the dynamics were assumed to be synchronous, with all
nodes updated at each time step. We note that a large
fraction of the models we test were not designed to be used
with synchronous updating. Yet, even in the asynchronous
case, we expect s ¼ 1 to correspond to the damage-
spreading critical transition as N → ∞. In this limit and
as t → ∞, regardless of the specifics of how nodes are
updated, we can treat the damage spreading as a simple
branching process with a branching ratio equal to the
average sensitivity s. Thus, we expect that networks run
asynchronously will have similar bulk behavior to those run
synchronously, with a critical transition at s ¼ 1 in the
infinite limit.
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Using s as a measure of criticality, we find all 67
biological regulatory networks are critical or near critical.
We show that the explanation of this ubiquitous nearness to
criticality requires stricter conditions on the causal structure
and logic of each node for the ensemble of biological
regulatory networks than merely constraining average net-
work properties such as hKi and hpi as predicted previously
based on RBN theory. In particular, our results demonstrate
that biological networks differ from the ensemble of critical
RBNswith fixed hKi and hpi predicted fromRBN theory in
three important ways: The Boolean functions in each
biological network typically (i) display covariance in K
andp, in that functions with a larger in-degree tend to have a
smaller pð1 − pÞ, (ii) depend on most or all inputs (making
connectivity coincide with causal structure), and (iii) are
mostly canalizing, such that there is nearly always at least
one input which, when set to a particular value, specifies the
output independent of the values of the other inputs. Each of
these constraints significantly affects the sensitivity, yet we
nonetheless find that all biological networks we measure
have sensitivity near one (Fig. 1). Our results indicate that
the ensemble of biological regulatory networks is more
distinguished by its criticality than other macroscale net-
work properties such as the degree distribution, edge
density, or fraction of activating conditions.
To determine the properties of regulatory networks most

important for achieving their near-critical state, we compare
the analysis of the sensitivity of the 67 biological networks
to the same analysis performed on three different ensembles
of random networks, each designed to successively isolate
the properties of the real regulatory networks driving their
average sensitivity. Each random ensemble is therefore
constructed with reference to one of the 67 biological
models [such that there are 67 × 3 random ensembles in our
study [33]; see Fig. 1(b)].
In prior work, most ensembles of RBNs are defined such

that the probability of a given node i to be activated by a
given condition, the activity bias pi, is equal for all nodes.
The average sensitivity si can be calculated for each node
separately (such that s ¼ P

isi=N), and it is known that,
when calculating the sensitivity for each Boolean function
with Ki inputs and activity bias pi, hsii ¼ 2Kipið1 − piÞ,
where the average is taken over possible Boolean functions
[41]. When naïvely assuming pi ¼ p ∀ i, or, more gen-
erally, when Ki is not correlated with pið1 − piÞ, the
average sensitivity for the network is simple:

snaïve ¼ 2hKihpð1 − pÞi; ð3Þ

where each average is taken over nodes i. But, as shown in
Fig. 2(a), we find that most networks in our database
display anticorrelation between Ki and pið1 − piÞ, mean-
ing that a more accurate estimate of the average sensitivity
for real regulatory circuits would require knowledge of the
magnitude of this covariance:

srandom ¼ 2hKihpð1 − pÞi þ 2C; ð4Þ

where C is the covariance over nodes between Ki and
pið1 − piÞ. Random networks that conserve hKi and hpi
but do not conserve this covariance (Fig. 1) should there-
fore be expected to have very different s than the biological
networks, as we indeed observe.
We can conclude that random networks conserving the

global structure and logic of biological networks (e.g.,
same hpi and hKi) do not reproduce the criticality of real
regulatory networks. We therefore next constructed random
network ensembles that control for the local (nodewise)
causal and logical properties of biological networks, not
just their global ones. Specifically, we note that network

(a)

(b)

FIG. 1. Biological networks are close to critical sensitivity.
(a) The 67 published Boolean network models of biological
regulation (red) have sensitivity near the critical value of 1. The
schematic depicts the sensitivity measure, equal to the average
number of nodes whose states are changed at time step tþ 1
(green) when one node’s state is changed at time step t (light
blue). Also shown are sensitivities of random ensembles pre-
serving various aspects of the original biological networks.
Preserving only the number of edges and mean activity bias
(gray) produces much more chaotic networks. Preserving the
causal structure and activity bias of each node in the network (tan)
produces sensitivity generally nearer to 1. Further restricting the
random ensemble to have the same number of canalizing
functions (yellow) even more closely approaches the criticality
of the biological ensemble. This indicates that, beyond average
connectivity, the specific structure and types of Boolean functions
are important for predicting criticality in the biological ensemble.
(b) Naïve random Boolean network theory does not correctly
predict the average sensitivity for the majority of biological
networks. Plotting individually the average sensitivities for each
biological network and its randomized ensembles reveals most
networks in the biological ensemble have a sensitivity signifi-
cantly different from that predicted by the random ensembles.
The mean and standard deviation for each ensemble are shown
for 100 samples from each ensemble.
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structure encapsulates the causal interactions of each node
defined by its number of inputs and outputs. To test the role
of this structure in driving criticality, we constructed a
random ensemble of Boolean networks that conserves the
local causal structure of each node, changing only the
specific Boolean functions implemented by each node.
That is, we constructed random networks keeping the same
causal inputs and outputs and the same activity bias pi for
each node, but with randomized Boolean logic functions
(labeled as “same causal structure and activity bias”). This
ensemble explicitly retains the covariance between K and
pð1 − pÞ. It also retains the fact that most connected inputs
in biological models are “operative” in the sense that there
is at least one state for which the output value of the node
depends on each input; this is not necessarily true in
traditional RBNs [Fig. 2(b)]. We find that even this very
restricted ensemble (tan color in Fig. 1) is often distinctly
more chaotic than the original biological networks. This is
due to a third way the random ensembles are distinct from
biology: We find that biological regulatory networks have
an overabundance of canalizing Boolean functions, mean-
ing that these functions have at least one input that can be
fixed to a value that forces the output to a specific value
regardless of the other inputs. We find that the biological
networks indeed overwhelmingly consist of canalizing
functions [Fig. 2(c)], as previously hypothesized [46,47].
As has been argued before [46–50], canalizing functions
tend to have smaller sensitivity: Random ensembles not
taking this into account will appear more chaotic than those

that sample from canalizing functions. We test the role of
canalizing functions in driving criticality by constructing a
third ensemble of random networks, which control for
causal structure, activity bias, and canalizing nodes (yellow
color in Fig. 1). Of the random ensembles tested, this
ensemble most closely matches the criticality observed for
the biological networks of the ensembles tested.
In summary, we find that knowing only the mean

properties (mean in-degree hKi and activity bias hpi) is
not enough to predict criticality in the ensemble of
biological regulatory networks. Nor is knowing the exact
network structure. We must additionally include Boolean
functions that tend to both be canalizing and depend on
most inputs in order to model networks with the same
critical sensitivity as biological networks. We can conclude
that the ensemble of biological regulatory networks differs
from what naïve RBN theory would predict [Fig. 2(d)].
Isolating the properties that uniquely distinguish the

ensemble of biological networks is a necessary step toward
statistical approaches to characterizing living matter and
therefore toward developing a bona fide physics of life. Our
results indicate that an average sensitivity close to critical is
sufficient to distinguish biological regulatory networks
from random networks with similar global topological
structure and logic. This suggests that the most distinguish-
ing features of biological networks are not their macroscale
connectivity patterns, such as degree distribution or edge
density, or even the average bias of their logic operations.
Instead, criticality in biological regulatory networks is
better explained by the relationship between local causal
and logical structure, quantified in terms of the covariance
of K and pð1 − pÞ, with a much higher frequency of
canalizing functions in their implemented logic than naïve
models would predict. While critical sensitivity is a
collective property of the interactions of many components,
we find that its explanation in regulatory networks relies on
constraining the properties of individual nodes. This
suggests that evolution optimizes the macroscale behavior
of regulatory networks, as quantified by their criticality, by
jointly tuning the microscale causal structure and logic of
individual components.
Constraining the relationship between K and pð1 − pÞ

for critical biological networks has implications for exper-
imental investigations of regulatory networks. For example,
characterizing this relationship provides new, testable
criteria for assessing criticality of regulatory networks in
the lab and can inform better constrained evolutionary
models. Our results also confirm that neither network
structure nor logic alone can predict the behavior of
biological networks: Knowing both is necessary to char-
acterize their behavior. In addition, our results provide new
criteria for the design of robust, adaptive regulatory
circuits, e.g., in the design of synthetic cells [51]. In order
for a genetic circuit to be critical, our results indicate that
genes regulated by many others must remain largely

(a) (b) (c)

(d)d)

All Networks
Critical Networks

random 
critical networks

Biological 
regulatory 
networks

FIG. 2. Boolean models of biological networks are atypical in
theoretical random ensembles. (a) The activity bias p and in-
degree K covary in observed networks, such that the simple
expected sensitivity in constant p, constant K networks [Eq. (3)]
is not valid. (b) Inoperative edges, which never affect the output
state, are much more rare in biological networks than in
randomized ensembles. (c) Compared to uniform sampling over
Boolean functions, a much larger fraction of functions in
biological networks are canalizing. (d) These differences imply
that biological networks form an ensemble distinct from naïve
RBNs with independent K and p selected for criticality.
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insensitive to many of their inputs. In this sense, criticality
in regulatory networks, which captures something of their
collective properties, can be considered as an emergent
property of their logical and causal structure together. This
has implications for our understanding of the physics of
living processes, where the connection between informa-
tion processing (aggregate logic) and causation (aggregate
connectivity) has yet to be fully explicated [52–54].
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