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We study hairpin folding dynamics by means of extensive molecular dynamics simulations, with
particular attention paid to the influence of helicity on the folding time. We find that the dynamical
exponent α in the anomalous scaling nðtÞ ∼ t1=α of the hairpin length nwith time changes from 1.6 (≃1þ ν,
where ν is the Flory exponent) to 1.2 (≃2ν) in three dimensions, when duplex helicity is removed. The
relation α ¼ 2ν in rotationless hairpin folding is further verified in two dimensions (ν ¼ 0.75) and for a
ghost chain (ν ¼ 0.5). Our findings suggest that the folding dynamics in long helical chains is governed by
the duplex dynamics, contrasting the earlier understanding based on the stem-flower picture of unpaired
segments. We propose a scaling argument for α ¼ 1þ ν in helical chains, assuming that duplex relaxation
required for orientational positioning of the next pair of bases is the rate-limiting process.
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DNA/RNA hairpin folding is the temperature-driven
self-assembly of a palindromic nucleic acid composed of
two complementary sequences linked by a relatively short
“loop” segment. Transcription and folding of small hairpins
(e.g., siRNAs, miRNAs) help initiate biochemical reac-
tions, cell signaling, gene expression, and a viral response
in many organisms [1–4]. Their synthetic counterparts are
used ubiquitously in biotechnological applications, such as
in CRISPR [5–8]. Interest in the folding dynamics of such
molecules has grown recently due to the availability of new
experimental techniques that allow high-resolution obser-
vations both in time and space [9–11]. As revealed by
numerical simulations and experiments, the formation of a
folding nucleus at the center of the hairpin is the time-
limiting step [12–16]. Nonetheless, actual folding time
(zippering after nucleus formation, sometimes referred as
the transition-path time) has been the focus of several
recent studies due to its anomalous character [17–19].
Progression of zippering can be monitored through the

duplex length, nðtÞ, which serves as the natural reaction
coordinate. Earliest theoretical models for predicting the
folding time, such as the zipper model, were based on the
equilibrium free-energy difference between paired (double-
strand) and unpaired (single-strand) states. Such consid-
erations predict a ballistic process nðtÞ ∼ t for T < Tc and a
diffusive one for T ¼ Tc, where Tc is the folding temper-
ature [18,20–23]. Yet, experimental data appear to yield a
better fit to the scaling relation nðtÞ ∼ t1=α with α ¼ ð1þ νÞ
[19,24], where ν ≃ 0.588 is the Flory exponent in three
dimensions, which relates a polymer’s radius of gyration in
a good solvent to the number of monomers through
Rg ∼ Nν.
The mechanism for the observed anomalous dynamics

has been investigated by exploiting the analogy to
field-driven polymer translocation across a membrane

(Y junction of the folding hairpin corresponding to the
membrane pore) [17,25–27]. In fact, the exponent (1þ ν)
has been previously reported for the translocation time vs
polymer length [28], under the assumption that the poly-
mers on both sides of the pore are in quasiequilibrium at all
times. Yet, as several studies pointed out [17,19], hairpin
folding is an out-of-equilibrium phenomenon; therefore,
observation of identical exponents in the two processes is
conceivably coincidental. It was recently argued that the
anomalous scaling of the hairpin folding time follows from
Langevin dynamics under constant force, with a friction
term associated with the relatively stretched portions of the
unfolded arms [19]. While the time-limiting process in the
folding dynamics is still unclear (further discussed below),
the numerical value of α is also subject to continuing
debate since out-of-equilibrium translocation processes and
Monte Carlo simulations of hairpin folding on lattice
models also show a regime with α ¼ ð1þ 2νÞ=ð1þ νÞ
[17,27,29].
A marked difference between hairpin folding and poly-

mer translocation phenomena is the rotational aspect of the
dynamics, in the former case, induced by the natural twist
of the DNA/RNA duplex. Despite past and recently
renewed interest in statistical and dynamical properties
of (un)winding polymers [30,31], existing studies on
hairpin folding pay no attention to implications of duplex
helicity. We here address the role of twist on zippering
dynamics by comparing the folding rates of two computa-
tional models that are almost identical, except for the
difference in angle and dihedral potentials, which induces
an inherent twist in one model (helix) and but not in the
other (ladder). By performing molecular dynamics (MD)
simulations on chains more than an order of magnitude
longer than the persistence length of the duplex, we
demonstrate that twist is, in fact, an essential factor in
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determining the folding-time scaling. As a bonus, the
ladder model emerges, to our knowledge, as a unique
example of hairpin folding that realizes the lower bound
α ¼ 2ν imposed by energy conservation [26].
We use a coarse-grained one-bead-per-base model [see

Figs. 1(a) and 1(b)] where a single DNA strand is held
together by harmonic bonds with an equilibrium length b0
and rotationally free joints at bead positions. Hairpin
duplex is modeled to be composed of complementary
bases occupying symmetric positions relative to the center.
Base-pairing (interstrand) interaction is a segmented poten-
tial that has a minimum value of ϵbp at pair distance d0,
vanishes beyond a maximum bond distance dmax, and is
specific (each base is allowed to bond with its complement
only). Pairing also induces interstrand angle and dihedral
potentials that yield a DNA-like structure in the helical
model in Fig. 1(a) and a zero-twist structure in the “ladder”
model in Fig. 1(b). The local and nonlocal (excluded
volume) potentials are used to enforce self-avoidance
except for the “ghost” chain simulations. Associated
potential functions and parameters are given in the
Supplemental Material [32]. Hydrodynamic and electro-
static interactions are not included; hence Rouse dynamics
is applicable, in line with the literature on the validity of
Rouse versus Zimm regimes in the context of DNA
dynamics [25,29,33–35].
MD trajectories are obtained by means of Langevin

dynamics in an NVT ensemble, implemented in C ++ for
speed. Prior to folding simulations, the critical temperature
Tc was obtained separately for ladder and helix models by
setting λðTcÞ ¼ 0.5, where λ is the mean pair fraction.
Contrary to one’s “mechanical” intuition, the helical

structure folds somewhat easier than the ladder
(Tl

c=Th
c ≃ 1.08) as a result of the smaller entropy of the

helical duplex. The mismatch in duplex entropies is due to
the difference in persistence lengths (34.3 bps and 23.3 bps
for the helical and ladder models, respectively), a conse-
quence of twist-bend coupling [36]. Note that, even the
helical model is not a faithful representation of the actual
DNA structure, but it captures the essential physical
ingredients for the subject of this study and is simple
enough to access long chains. Temperature in all of our MD
simulations was chosen to be 0.16 in units of the pair
bonding energy ϵbp, corresponding to 0.91Tc for the helix
and 0.85Tc for the ladder model. Time was measured in
dimensionless units 104 × b0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ϵbp

p
in all figures, where

b0 is the equilibrium bond length and m is the mono-
mer mass.
In order to investigate folding dynamics [see Figs. 1(c)

and 1(d) for snapshots] we followed the procedure outlined
in Ref. [19]. In particular, the nucleation stage was
bypassed by starting the MD simulations from an unfolded
chain, which is equilibrated a priori at T > Tc and has its
first four base pairs (at the center of the polymer)
permanently bound. The end effects were removed by
defining the folding time τ as nðτÞ=N ¼ 0.75. In order to
elucidate the scaling behavior τ ∼ Nα, we covered a wide
range of hairpin lengths in the interval 24 ≤ N ≤ 644.
While lattice models can probe even larger systems
sizes, they do not faithfully represent the helical duplex
structure and associated rotational dynamics that we under-
line below.
Our central result is given in Fig. 2 where we plot both

nðtÞ vs t and the mean folding time τ vs N (all averaged
over ∼103 independent runs), separately for the helical and
the ladder models. Data points spanning more than a
decade in N are consistent with τ ∼ N1þν for the helical
model. This exponent was reported earlier in Ref. [19]
where significantly shorter chains were investigated by
means of a three-beads-per-nucleotide hairpin model [37].
The ladder model obeys a visibly different scaling law that
we postulate to be τ ∼ N2ν, also shown in Fig. 2 for
comparison. The “whiskers” noticeable above the curves in
Fig. 2 (also Fig. 3) reveal the speeding up during final
stages of folding, where now shorter unbound segments
facilitate faster relaxation.
The difference between helix and ladder folding times

stands in contrast with the heuristic understanding for α ¼
ð1þ νÞ developed in Ref. [19], where the time evolution of
the duplex length nðtÞ was proposed to obey the Langevin
equation γðnÞ _n ¼ f, with f a constant binding force
satisfying fb0=kBT ≳ 1 and γðnÞ ∼ nα−1 representing the
friction (up to logarithmic corrections [38]) on the stretched
“stems” of the unfolded segments that are being
pulled towards the Y junction. In this scenario, the folding
speed is determined solely by the unpaired, single-strand
portion of the hairpin. Accordingly, α is expected to remain

FIG. 1. Schematic view of the coarse-grained helix and ladder
models (a), (b) and their folding processes (c), (d). θ and φ denote
the interchain angle and dihedral potentials, respectively. b0 and
d0 are the equilibrium bond lengths. r⃗ and r⃗0 are the radius vectors
for the complementary bases.
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unchanged after the helical duplex is replaced by a non-
helical ladder geometry. The contrast between this expect-
ation and our numerical results in Fig. 2 is striking,
especially considering that a stretched “stem” can be
observed in both cases (not shown). The new exponent
α ≃ 1.2 we find for “ladder folding” is also visibly different
from α ¼ ð1þ 2νÞ=ð1þ νÞ ≃ 1.37 found in another out-of-
equilibrium stress propagation model for DNA transloca-
tion through a pore [26]. A finite-size scaling analysis of
the data for Fig. 2 and the subleading corrections it unveils
are discussed in the Supplemental Material [32].
We propose that α ¼ 2ν for the ladder model and put it to

test in two alternative settings where the Flory exponent is
modified by (1) changing the dimension and (2) removing
self-avoidance. As for (1), the obvious choice is to confine

the ladder-like hairpin to two dimensions, since its equa-
tions of motion can trivially be constrained to a plane (in
contrast, the finite thickness of the helical duplex makes
confinement of the single-strand portions technically diffi-
cult). This is a convenient test ground where ð1þ νÞ ¼
1.75 and 2ν ¼ 1.5 are also easy to distinguish. The analysis
of our MD simulations reported in Fig. 3 are in excellent
agreement with α ¼ 2ν.
Scenario (2) was implemented by removing the hard-

core repulsion term in the model, hence producing a
“ghost” polymer with ν ¼ 0.5. Interestingly, corresponding
folding dynamics (shown in Fig. 4) is now ballistic both for
the ladder-like and the helical hairpin models, where the
duplex length nðtÞ is proportional to the elapsed time with
model-dependent growth rates. While ladder folding still
conforms with α ¼ 2ν, hence providing further support for
our hypothesis, observation of the same exponent in the
helical case disagrees with the above picture. Next, we
address this issue.
An obvious difference between the dynamics of the two

models is the rotational aspect of the folding process in the
helical model. Since the single-stranded portion is much
harder to rotate (except for the very last stages of folding),
the helical duplex has to rotate around the centerline as it
folds. Ladder model is not subject to such a constraint. We
therefore check if the “ghost” helical model above is any
different in this respect. The inset of Fig. 4 shows the
rotation angle of the duplex around its centerline as a
function of time for the original and the “ghost” helical
models. In fact, in absence of self-avoidance, the helical
duplex folds practically without any rotation; i.e., the
“ghost” helical model is rotationally more similar to the
ladder model. Hence, we conclude that the slow
(α ¼ 1þ ν) and fast (α ¼ 2ν) folding behaviors observed
above are linked to duplex rotation.

FIG. 2. Number of the formed base pairs as a function of time
for the helix and ladder structures in three dimensions. The slopes
are 0.63� 0.01 (helix) and 0.81� 0.01 (ladder), measured from
the longest chain (N ¼ 640) by using 17 equally spaced samples
on the logarithmic scale. Wine colored dashed lines are the
postulated slopes 1=1.6 ¼ 0.625 and 1=1.2 ≃ 0.83 for the helix
and the ladder, respectively. Inset shows the total folding time vs
the length N of the hairpin.

FIG. 3. Number of the formed base pairs as a function of time
for the ladder model in two dimensions. The slope is 0.68� 0.01,
measured from the longest chain (N ¼ 640) using 17 equally
spaced samples on the logarithmic scale. Wine colored dashed
line is the postulated slope of 1=1.5 ≃ 0.67. Inset shows the total
folding time vs the length N of the hairpin.

FIG. 4. Number of the formed base pairs as a function of time
for the helix and ladder structures using a “ghost” model in three
dimensions. The red color dashed lines correspond to constant
folding rates. The inset shows the comparison of the rotation
angle (ΔΘ) of duplex (about the centerline) in the “ghost” and
normal (self-avoiding) helical models.
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It is worthwhile to point out that α ¼ 2ν is a lower bound
set by the folding energetics. To show this, we adopt an
argument from polymer translocation studies [26] to the
present context: given that τðsÞ ∼ sα, the mean velocity of
the bases with index s (between the beginning of the
folding process and the instant they pair up) is

vðsÞ ∼ jr⃗ðsÞ − r⃗0ðsÞj
sα

∼ sν−α; ð1Þ
where r⃗ and r⃗0 are the radius vectors for the complementary
bases. The energy lost to friction can then be expressed as

Ef ∼
Z

N

0

ηvðsÞsνds ∼ ηN2ν−αþ1; ð2Þ

where η is the friction coefficient and sν is the distance
travelled by the sth pair until they bind, so that the integrand
is the work done against friction. The sum total of this work
is supplied by N pair-binding events during folding;
therefore we expect

N2ν−αþ1 ≤ N or α ≥ 2ν: ð3Þ
Our observations suggest that hairpin folding is a

complex nonequilibrium phenomenon involving both rota-
tional and translational relaxation processes. In absence of
helicity, folding progresses at a speed limited only by the
constraint on the rate of energy transfer between bonds
forming at the Y junction and the viscous environment. On
the other hand, the folding rate of an DNA-like hairpin
structure is significantly slower due to the required rota-
tional relaxation of the duplex (as implied by Fig. 4 inset).
A polymer translocating through a pore also displays a

fast and a slow regime, depending on the applied force.
Translocation time (vs length) exponents α ¼ ð1þ 2νÞ=
ð1þ νÞ (attributed to stress propagation dynamics) for fast
translocation and α ¼ ð1þ νÞ for slow translocation [29]
are analogous to the hairpin folding scenario here. In Fig. 5
we show that, in the slow-folding regime, the helical duplex
remains not far from equilibrium during the entire folding
process, while the fast-folding ladder structure maintains a
duplex that is very compact (more so than the trans portion
in fast translocation simulations [29]).
Motivated by these observations, below we propose a

scaling argument for α ¼ ð1þ νÞ in helical hairpin folding.
Given that the relaxation of the duplex is the rate-limiting
step, we assume that the duplex with length nðtÞ has size
∼nðtÞν at all times (see Fig. 6). A Langevin equation for the
folding process can then be written as

ηðnÞ dx
dt

∼ f; ð4Þ

where ηðnÞ ∼ n is the friction coefficient; dx is the
displacement of the duplex due to an added pair as depicted
in Fig. 6,

dx ¼ ðnþ dnÞν − nν ∼ νnν−1dn; ð5Þ

and f is the constant force at the Y junction due to the
binding potential. Then Eq. (4) becomes

nnν−1dn ∼ dt: ð6Þ

Integrating Eq. (6) yields the folding time, τ ∼ N1þν. Note
that, unlike the polymer translocation problem, the
mechanical properties of the polymer on the two sides
of the Y junction are quite different. This introduces
different relaxation timescales, allowing one side (duplex)
to maintain a quasiequilibrium state throughout most of the
folding, while the other (unpaired) segments are out of
equilibrium. In the ladder scenario, the relaxation of the
duplex is not a prerequisite for pairing, hence folding
progresses with both sides visibly out of equilibrium. In
this case, we observed that the folding rate is limited only
by the allowed rate of energy flow to the fluid, given the
initial equilibrium configuration of the hairpin. In con-
clusion, our findings provide a novel perspective on hairpin
folding dynamics by unveiling the significant, and so far
ignored, contribution of the rotational motion of the duplex
in the process.

FIG. 5. Radius of gyration of the duplex vs the duplex length
during the folding processes of the helix and ladder in
three dimensions. Wine colored dashed lines indicate the
upper bound (ν) and lower bound (1=3) for the slopes correspond-
ing to equilibrated and fully compact structures, respectively.

FIG. 6. A cartoon depiction of the hairpin folding dynamics
and the notation used in Eqs. (4)–(5). Dark circles label the last
bound pair.
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