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The numerical renormalization group (NRG) is tailored to describe interacting impurity models in
equilibrium, but it faces limitations for steady-state nonequilibrium, arising, e.g., due to an applied bias
voltage. We show that these limitations can be overcome by describing the thermal leads using a
thermofield approach, integrating out high energy modes using NRG, and then treating the nonequilibrium
dynamics at low energies using a quench protocol, implemented using the time-dependent density matrix
renormalization group. This yields quantitatively reliable results for the current (with errors ≲3%) down to
the exponentially small energy scales characteristic of impurity models. We present results of benchmark
quality for the temperature and magnetic field dependence of the zero-bias conductance peak for the single-
impurity Anderson model.
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Introduction.—A major open problem in the theoretical
study of nanostructures, such as quantum dots or nanowires,
is the reliable computation of the nonlinear conductance
under the conditions of nonequilibrium steady-state (NESS)
transport. These are open quantum systems featuring strong
local interactions, typically described by quantum impurity
models such as the interacting resonant levelmodel (IRLM),
the Kondo model (KM), or the single-impurity Anderson
model (SIAM).Muchwork has been devoted to studying the
NESS properties of such models using a variety of methods
[1–15], leading to a fairly good qualitative understanding of
their behavior. The interplay of strong correlations, NESS
driving, and dissipative effects leads to a rich and complex
phenomenology. In particular, for the KM and SIAM, the
nonlinear conductance exhibits a striking zero-bias peak, the
so-calledKondo peak, characterized by a small energy scale,
the Kondo temperature TK , that weakens with increasing
temperature and splits with increasing magnetic field, in
qualitative agreementwith experiments [16–22].However, a
full, quantitative description of the NESS behavior of such
models under generic conditions has so far been unfeasible:
none of the currently available approaches meet the three-
fold challenge of (i) treating interactions essentially exactly,
(ii) resolvingvery small energy scales, and (iii) incorporating
NESS conditions.
This Letter presents an approach that does meet this

challenge. (i) To deal with interactions, we use numerical
matrix product state (MPS) methods. (ii) We use the
numerical renormalization group (NRG) [23,24] to integrate
out high-energy modes, leading to a renormalized impurity

problem [25] whose reduced effective bandwidth,D�, is set
by a transport window defined by the voltage bias (V) and
the temperature (T). This considerably enlarges the window
of accessible time scales, which scale as 1=D�, and thus it
enables us to treat arbitrary voltages. (iii) We then study the
transport properties of the renormalized problem using a
quench protocol where we abruptly switch on the impurity-
lead coupling and compute the subsequent time evolution of
the current, JðtÞ, using the time-dependent density-matrix
renormalization group (TDMRG) [26–29]. Whereas similar

(a)  (b)

FIG. 1. (a) The discretization combines a log-sector for high
energy excitations with a lin-sector for the TW. (b) The log-sector
is treated using NRG. Here, “holes” and “particles” are recom-
bined. The effective low-energy basis of NRG is used as the local
state space of one MPS chain element. For the lin-sector, holes
(empty at t ¼ 0) and particles (filled at t ¼ 0) are treated
separately. On the chain including the RI, we do a TDMRG
calculation based on a Trotter decomposition in “odd” and “even”
bonds [37].
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protocols [5,15,30,31] typically work at T ¼ 0, we consider
nonequilibrium thermal leads for arbitrary T, using the
thermofield approach [32–36] to describe them with a pure
product state in an enlarged Hilbert space.
We benchmark our approach using the IRLM, finding

excellent agreement with exact Bethe-ansatz predictions for
the NESS current. We then turn to the SIAM. For the linear
conductance, we reproduce equilibrium NRG results. For
the nonlinear conductance, we study the evolution of the
zero-bias peak with T and magnetic field.
Setup.—We consider impurities coupled to two thermal

leads, labeled α ∈ fL;Rg and characterized by Fermi
functions fαðωÞ¼ðeðω−μαÞ=Tþ1Þ−1, where μL=R ¼ �V=2.
(We set e ¼ ℏ ¼ kB ¼ 1.) We study two different models,
the spinless IRLM with a three-site impurity and Coulomb
repulsion U between neighboring sites, and the SIAM
with Coulomb repulsion U between different spins and a
Zeeman splitting due to a magnetic field B. The impurities
of these models are described by

HðIÞ
imp ¼ εdn̂C þ Uðn̂L þ n̂R − 1Þn̂C

þ ðt0d†CdL þ t0d†CdR þ H:c:Þ ð1Þ

HðSÞ
imp ¼ εdðn̂d↑ þ n̂d↓Þ þUn̂d↑n̂d↓ −

B
2
ðn̂d↑ − n̂d↓Þ; ð2Þ

where n̂i ¼ d†i di, for i ∈ fL; R;C; d↑; d↓g. In this Letter,
we focus on the particle-hole symmetric case (εd ¼ 0 for
the IRLM and εd ¼ −ðU=2Þ for the SIAM). The leads are
assumed to be noninteracting,

HðI=SÞ
lead ¼

X
αðσÞk

εkc
†
αðσÞkcαðσÞk ≡

X
q

εqc
†
qcq; ð3Þ

with spin index σ ∈ f↑;↓g for the SIAM, q≡ fα; ðσÞ; kg a
composite index, and k a label for the energy levels. The
impurity-leads hybridization is given by

HðI=SÞ
hyb ¼

X
q

ðvqd†α=σcq þ H:c:Þ; ð4Þ

where in the IRLM the left (right) impurity site dL (dR)
couples to the modes cLk (cRk), respectively, while in the
SIAM the two spin states dσ couple to the lead modes cασk
spin-independently, vq ¼ vαk. The couplings vq induce an
impurity-lead hybridization ΓαðωÞ ¼ π

P
kσjvqj2δðω − εqÞ,

chosen such that they represent a box distribution ΓαðωÞ ¼
ΓαΘðD − jωjÞ in the continuum limit with half-bandwidth
D ≔ 1 set as the unit of energy, unless specified otherwise.
For the IRLM, we set ΓL ¼ ΓR ¼ 0.5D corresponding to
the hopping element of a tight-binding chain with half-
bandwidth D, and for the SIAM, we likewise choose
ΓL ¼ ΓR and define the total hybridization Γ ¼ ΓL þ ΓR.

Strategy.—We describe the thermal leads decoupled
from the impurity using the thermofield approach
[32–35]. The impurity-lead coupling induces nonequili-
brium processes, which occur on energy scales correspond-
ing to the transport window (TW), defined as the energy
range in which fLðωÞ ≉ fRðωÞ. Energy scales far outside
of this TW are effectively in equilibrium, and we therefore
integrate them out using NRG, whereas we describe
the nonequilibrium physics within the TW using
TDMRG quench. We implement both the NRG and
TDMRG using MPS techniques. We use a logarithmically
discretized sector (log-sector), representing the energy range
of the leads outside of the TW, and a linearly discretized
sector (lin-sector) within the TW, as depicted in Fig. 1(a).
The transition from the logarithmic to the linear discretiza-
tion can be smoothed [37]. To simplify theMPS calculation,
we map the leads onto a chain, with on-site and nearest-
neighbor terms only, by tridiagonalizing the Hamiltonian.
Integrating out the log-sector using NRG we get a renor-
malized impurity (RI) [25] and a reduced effective band-
width, 2D�, of order of the size of the TW. This enables us to
treat transport on energy scales much smaller than D. In
particular, we can study arbitrary ratios of V=TK in the
SIAM, even if TK ≪ D. We then turn on the coupling
between the log-sector and lin-sector by performing a
TDMRG quench, starting from an initial state jΨinii ¼
jϕinii ⊗ jΩlini, where jϕinii describes the initial state of
the RI, and jΩlini is a pure product state describing the lin-
sector of the thermal leads in the thermofield approach. To
describe steady-state properties, we time-evolve jΨinii until
expectation values are stationary up to oscillations around
their mean value. Since the effective bandwidth relevant for
this TDMRG calculation is given by D�, not D, exponen-
tially large time scales of order 1=D� ≫ 1=D are accessible.
Thermofield description of decoupled leads.—In the

context of MPS methods, the thermofield description
[32–35] of the decoupled leads has two advantages: finite
temperature states are represented as pure states, and
thermal leads are described by a simple product state.
Akin to purification [29], we double our Hilbert space by

introducing one auxiliary mode cq2 (not coupled to the
system) for each lead mode cq1 ¼ cq. In this enlarged
Hilbert space, we define a pure state jΩi such that the
thermal expectation value of an operator A acting on the
original physical lead is given by hAi ¼ hΩjAjΩi. This state
can be written as [37]

jΩi ¼
Y
q

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − fq

p
j0; 1iq þ

ffiffiffiffiffi
fq

p
j1; 0iq

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡j0̃;1̃iq

; ð5Þ

with fq ¼ fαðεqÞ, where j0; 1iq and j1; 0iq are defined by

cq1j0;1iq ¼ c†q2j0;1iq ¼ c†q1j1;0iq ¼ cq2j1;0iq¼ 0 for all q.
We map jΩi to a pure product state using the rotation
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�
c̃q1
c̃q2

�
¼

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fq

p − ffiffiffiffiffi
fq

p
ffiffiffiffiffi
fq

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fq

p
1
A�

cq1
cq2

�
: ð6Þ

Having c̃q1jΩi ¼ c̃†q2jΩi ¼ 0, the modes c̃q1 (c̃q2) can be
interpreted as holes (particles)which are empty (filled) in the
thermal state, respectively. Since in Eq. (5) we constructed
jΩi to be an eigenstate of the particle number operator, it
remains so in the rotated basis. The physical and auxiliary
modes are decoupled in the unrotated basis; hence we are
free to choose an arbitrary Hamiltonian (and hence time
evolution) for the auxiliary modes [47]. We choose their
single-particle energies equal to those of the physicalmodes,
εq2 ¼ εq, in order to ensure that the resulting total lead
Hamiltonian is diagonal in j in both the original and the
rotated basis:

Hlead ≡Hlead þHaux ¼
X
qj

εqc
†
qjcqj ¼

X
qj

εqc̃
†
qjc̃qj: ð7Þ

Equation (4) is rotated intoHðI=SÞ
hyb ¼P

qjðṽqjd†α=σ c̃qjþH:c:Þ,
whose couplings, ṽq1 ¼ vq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fq

p
and ṽq2 ¼ vq

ffiffiffiffiffi
fq

p
,

now explicitly depend on the Fermi function and encode
all relevant information about temperature and voltage.
For the SIAM, we use a specific linear combination of

c̃Lkσi and c̃Rkσi modes, C̃kσi ∝
P

αṽαkσic̃αkσi, because the
modes orthogonal to these [37] decouple. Mixing left and
right lead modes is possible despite the nonequilibrium
situation, because the difference in chemical potentials is
accounted for by the V-dependent couplings ṽq. In the
IRLM, this reduction of modes is not possible because left
and right lead couple to different impurity sites.
NRG renormalization of the impurity.—As is standard

for NRG, we map the leads (in the thermofield representa-
tion) from the original “star geometry” to a chain geometry.
To ensure that jΩi remains a product state, we perform the
corresponding unitary transformation for holes and par-
ticles independently. This results in a chain consisting of
two channels i ∈ f1; 2g for the SIAM, and four for the
IRLM due to the additional lead index α ∈ fL;Rg. The first
part of the chain corresponds to the log-sector, the later part
to the lin-sector. The hoppings within the log-sector decay
as Λ−n, because for each lead level q within the log-sector
of the original star geometry, either c̃q1 or c̃q2 decouples
from the RI due to fq ∈ f0; 1g. For NRG calculations, it is
unfavorable to describe holes and particles in separate
chains, because then particle-hole excitations involve
opposite levels of different chains. For that reason, we
recombine the holes and particles of the log-sector into one
chain using a further tridiagonalization. In the IRLM, this is
done for each lead α independently. After that, the log-
sector resembles a standard Wilson chain with hoppings
that scale as Λ−n=2, reflecting the fact that the log-sector is

effectively in equilibrium. A sketch of the different geom-
etries can be found in Fig. S2 of Ref. [37].
Using NRG, we find an effective low-energy many-body

basis for the log-sector, which we interpret as the local state
space of a RI, and we treat it as one chain element of our
MPS chain. Coupled to this RI, we have the lin-sector of the
leads, represented as two separate chains for holes and
particles, as shown in the upper part of Fig. 1(b).
TDMRG quench.—We choose the initial state for the

quench as the product state jΨinii ¼ jϕinii ⊗ jΩlini. This
implies that for the lin-sector, we start with the state in
which all holes (particles) are empty (filled). As the initial
state of the RI, jϕinii, we choose a ground state of the
NRG basis (in principle, one can choose any of the low-
energy basis states whose excitation energy is well within
the TW). We then switch on the coupling between the
RI and the leads, smoothly over a short time window.
The system time-evolves under the Hamiltonian Ĥ ¼
Himp þHhyb þHlead þHaux, jΨðtÞi ¼ e−iĤtjΨinii. We per-
form the time evolution using TDMRG based on a second
order Trotter decomposition, as depicted in Fig. 1(b), with a
Trotter time step of order 1=D�. (Technical details can be
found in Sec. S-3.C of Ref. [37].) The fact that this initial
lead state is entanglement-free is advantageous for reaching
comparatively long times. We extract NESS information
from hAðtÞi ¼ hΨðtÞjAjΨðtÞi within a window of inter-
mediate times, large enough for post-quench transients to
no longer dominate, but well below the recurrence time,
where finite-size effects set in. We compute the current
through the impurity site (SIAM) or the central impurity
site (IRLM), respectively, using J ¼ 1

2
ðJL − JRÞ, where

JL (JR) is the current that flows into the site from the
left (right), respectively [37]. We are able to track
the time evolution up to times of order 1=D�. Since
D� ∼maxðV; TÞ, this suffices to describe particle transport
for any choice of V or T. However, processes on much
smaller energy scales cannot necessarily be resolved (see
Sec. S-4.C of [37] for details).
Interacting resonant level model.—We benchmark our

method for the IRLM, for which Ref. [15] computed the
steady-state current at T ¼ 0 both numerically, using
DMRG quenches, and analytically, using the exact Bethe
ansatz. A universal scaling of the current-voltage character-
istics was found at the self-dual point of the model, with the
corresponding energy scale TB scaling as ðt0Þ3=4. (These
results were very recently confirmed by Ref. [48].) Figure 2
presents a comparison of our data with the analytical
expression for the universal scaling curve given in [15],
for the current as function of voltage at T ¼ 0 at the self-
dual point U ≈D and εd ¼ 0. The agreement is excellent
for a large range of t0 values. For each value of t0, TB was
used as a fit parameter; the resulting TB values, shown in the
inset, agree nicely with the scaling predicted in [15]. Using
the fitted values of TB, all data points deviate by less than
2% from the Bethe results. Our use of NRG to renormalize
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the impurity enables us to study values of t0 up to a hundred
times smaller than the values used in [15], giving us access
to much smaller values of TB and larger V=TB ratios.
Single-impurity Anderson model.—For the SIAM, a

natural first check is the noninteracting case, U ¼ 0, which
is exactly solvable, but its treatment in MPS numerics does
not differ from the case U ≠ 0. The inset of Fig. 3(a)
displays the current over voltage for two different temper-
atures, showing good agreement between our MPS
numerics and exact predictions, thus providing direct
evidence for the validity of our approach. For U ≠ 0,
our method yields quantitative agreement with previous
numerical results obtained in the regime V ≳ Γ [6,7], see
Sec. S-6 of Ref. [37] for details. Furthermore, we find good
agreement with the auxiliary master equation approach for
arbitrary voltages, see Ref. [49] for details.

The main panel of Fig. 3(a) focuses on the differential
conductance gðT;VÞ¼ ð∂JðT;VÞ=∂VÞ=ð2e2=hÞ for strong
interactions. As a consistency check, we compare our
results for gðT; 0Þ with the linear conductance computed
using FDM-NRG [51]. We find excellent agreement over a
large range of temperatures. From this data, we define the
Kondo temperature TK via the condition gðTK; 0Þ≡ 1

2
.

We also show gð0; VÞ over a wide voltage range in
Fig. 3(a). In agreement with experiment [22] and other
theoretical work [8], this curve lies above gðT; 0Þ. The
difference can be quantified by the value of gð0; TKÞ, a
universal number characterizing NESS transport for the
SIAM, whose precise value is not yet known with quanti-
tative certainty. Our method, which we trust to be quanti-
tatively reliable, yields gð0; TKÞ ≈ 0.60� 0.02 in the
Kondo limit of U=Γ ≫ 1, where the estimated error bar
of about 3% is likely conservative (cf. [37]). For compari-
son, (nonexact) analytical calculations for the Kondo model
yielded gð0; TKÞ ≈ 2=3 [8,9].
Figures 3(b)–3(d) show our quantitative description of the

T- and B-dependence of the zero-bias peak in the Kondo
limit (U=Γ¼12). With increasing T at B ¼ 0, the zero-bias
peak decreases [Fig. 3(b)], as observed in numerous experi-
ments [17–22]. For finiteB, the zero-bias peak splits into two
sub-peaks atV ≈�B [Fig. 3(c)]. Amore detailed analysis of
the value of B, at which the peak begins to split [52,53], is
given in Sec. S-7 of Ref. [37]. In Fig. 3(d), the peak position
with respect to B is resolved in more detail, with the voltage
given in units of B. While for B ≈ 2TK the peak position is
roughly at V=B ≈ 0.83, it quickly tends towards V=B ¼ 1
for larger magnetic fields. Our study thus quantitatively
confirms that the large-field peak-to-peak splitting for the
nonlinear conductance is ≈2B, as observed in several
experiments [16,17,20]. This is also found in independent
calculations [49] using the approach of Ref. [13].
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FIG. 3. Numerical results for the SIAM with Γ ¼ 10−3. For U ¼ 12Γ, used in (b)–(d), we find TK ¼ 2.61 × 10−5. [This implies

TK ¼ 1.04TðχÞ
K , where TðχÞ

K ¼ ð1=4χsÞ ¼ ðUΓ=2Þ12eπ½ðΓ=2UÞ−ðU=8ΓÞ� is an alternative definition of the Kondo temperature based on the
Bethe-ansatz result [50] for the static spin susceptibility χs, at B ¼ T ¼ 0]. (a) Conductance vs V and T: squares show quench results in
linear response as function of T, gðT; 0Þ, in good agreement with the NRG results (solid line). Dots and triangles show quench results for
the nonlinear conductance vs V at T ¼ 0 for two different values of U. Inset: current vs V for U ¼ 0 on a log-log scale, for two different
temperatures, showing excellent agreement with analytical results. (b) Disappearance of the Kondo resonance in gðT; VÞwith increasing
T at B ¼ 0, with gðT;−VÞ ¼ gðT; VÞ, by symmetry. (c) Splitting of the resonance in gð0; VÞ for finite B. Two subpeaks emerge at
V ≈�B, as marked by the dashed lines. (d) Similar data as in (c) but plotted vs V=B and on a linear scale. For B ¼ 2TK, the peak
position in the conductance gð0; VÞ is still slightly below B, but for a higher magnetic field, the peak clearly moves towards V=B ≈ 1. In
(b)–(d), the squares indicate the NRG result for V ¼ 0.
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PHYSICAL REVIEW LETTERS 121, 137702 (2018)

137702-4



Summary and outlook.—We have combined the thermo-
field approach with a hybrid NRG-TDMRG quench strat-
egy to reach a longstanding goal: a versatile, flexible, and
quantitatively reliable method for studying quantum impu-
rity models in steady-state nonequilibrium. Because of
these features, our scheme has the potential of developing
into the method of choice for such settings, in the same way
as NRG is the method of choice for equilibrium impurity
models. Indeed, various quantitative benchmark tests have
confirmed the accuracy of our scheme, and it can easily be
applied to other models and setups. For example, a
generalization to a finite temperature difference between
the left and right lead would be straightforward. It would
also be interesting to use our setup for quantitative studies of
the nonequilibrium two-channel Kondo physics measured
in [54], or to study impurity models with superconducting
leads, since the hybrid NRG-TDMRG approach is ideally
suited for dealing with the bulk gap.
Methodologically, our setup can straightforwardly be

extended to study NESS physics, without resorting to a
quench strategy, by including Lindblad driving terms in the
Liouville equation, which are local on the MPS chain [55].
Although the direct time-evolution of such Lindblad
equations based on tensor networks seems feasible [56],
one could try to avoid the real-time evolution altogether,
and target the steady-state directly, by looking for the
density matrix that fulfills _ρ ¼ 0 [57,58].
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