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Quantum transport close to a critical point is a fundamental, but enigmatic problem due to fluctuations,
persisting at all length scales. We report the scaling of optical conductivity (OC) in the collisionless regime
(ℏω ≫ kBT) in the vicinity of a relativistic quantum critical point, separating two-dimensional (d ¼ 2)
massless Dirac fermions from a fully gapped insulator or superconductor. Close to such a critical point,
gapless fermionic and bosonic excitations are strongly coupled, leading to a universal suppression of the
interband OC as well as of the Drude peak (while maintaining its delta function profile) inside the critical
regime, which we compute to the leading order in 1=Nf- and ϵ expansions, where Nf counts the fermion
flavor number and ϵ ¼ 3 − d. Correction to the OC at such a non-Gaussian critical point due to the long-
range Coulomb interaction and generalizations of these scenarios to a strongly interacting three-
dimensional Dirac or Weyl liquid are also presented, which can be tested numerically and possibly from
nonperturbative gauge-gravity duality, for example.

DOI: 10.1103/PhysRevLett.121.137601

Introduction.—Recently, quantum critical phenomena
in strongly interacting low-dimensional itinerant fer-
mionic systems have attracted ample attention [1]. Such
a broad arena can be divided into two sectors, namely,
when long-lived gapless fermionic excitations reside
around (a) a few isolated points in the Brillouin zone
(referred to as Fermi points), or (b) a closed contour in the
reciprocal space, the Fermi surface, with our focus being
solely on the former system. A paradigmatic representa-
tive of a nodal Fermi liquid is constituted by quasirela-
tivistic Dirac excitations, which find its condensed matter
realization, for example, in graphene [2] and on the
surface of topological insulators [3,4].
A two dimensional Dirac system can undergo continu-

ous quantum phase transitions into a plethora of Mott
insulators, such as antiferromagnet [5–10] and charge-
density-waves [5,11–13] (both relevant for graphene), or
superconducting phases, for example, the s-wave pairing
(relevant for graphene and surface states of a topological
insulator) [14–16], at strong coupling depending on the
relative strength of short-range repulsive or attractive
interactions. By now, compelling evidence exists that
the associated quantum critical behavior can be captured
by an effective Gross-Neveu-Yukawa (GNY) field theory
that, besides standard order-parameter fluctuations, also
accounts for the coupling between gapless fermionic
excitations and the bosonic order-parameter field [6–10,
12,13,17–26]. Concomitantly, the interacting GNY quan-
tum critical point (QCP) and the corresponding critical
regime, shown in Fig. 1, host a strongly coupled non-
Fermi liquid, where the notion of any sharp quasiparticle
excitations becomes moot.

The question arises how to theoretically understand
possible experimental ramifications of such a strongly
coupled relativistic non-Fermi liquid, and in this Letter,
we present its imprint on the optical conductivity (OC). So
far, much focus has been on the OC at purely bosonic
QCPs, as in the case of superconductor-insulator transition
[27–35], at a very specific supersymmetric QCP [36] or a
spin-fermion model [37]. Here, we reveal universal features
of the quantum transport at the generic strongly coupled
fermionic QCP in two spatial dimensions, separating a
Dirac liquid and an interaction-driven gapped state. Note
that in pure bosonic systems universal and finite conduc-
tivity (due to gapless bosonic excitations of charge 2e) can
only be found at the interacting QCP [27–35]. In contrast,
our analysis establishes a universal suppression of the OC
at the GNY QCP and in the associated non-Fermi liquid, in
comparison to that of the noninteracting nodal Dirac liquid
(accommodating only gapless fermionic excitations of
charge e). Its physical origin lies in a strong coupling
between quantum critical fermionic and bosonic excita-
tions, falling outside the paradigm of the standard purely
bosonic Φ4 theory.
Our analysis relies on a perturbative method, controlled

by the distance from the upper-critical three dimensions of
the theory (an ϵ expansion) and fermionic flavor number
(1=Nf expansion). By the same token, we address the
quantum critical transport in three dimensions and the
influence of the long-range Coulomb interaction (always
present in a real system) at a fermionic critical point. Our
key results can be summarized as follows: We find
universal suppression of both interband [see Eq. (1)] and
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Drude [see Eq. (2)] components of the OC near the GNY
QCP in conjunction with the enhancement of the former
piece by the long-range tail of Coulomb interaction [see
Eqs. (17) and (18)].
The gauge invariance assures that conductivity (σ) scales

as σ ∼ Ld−2 with the system size L. Therefore, in two spatial
dimensions (d ¼ 2), conductivity at finite temperature (T)
and frequency (ω) is a universal function of the dimension-
less ratio x ¼ ℏω=ðkBTÞ, namely, σ ¼ ðe2=hÞfðxÞ, where
e2=h is the quantum of conductance. For ℏω ≫ kBT,
collisionless transport is dominated by coherent excitations
created by the external electric field. By contrast, in the high-
temperature limit (kBT ≫ ℏω), also known as the collision-
dominated or hydrodynamic regime, a plasma of preexisting
thermal excitations, while achieving local equilibration via
incoherent mutual collisions, dominates transport, and typ-
ically fð∞Þ < fð0Þ [1,38].
First, we show that the interband (IB) piece of the OC at

the relativistic GNY QCP is given by [39]

σIB� ðxÞ ¼
�
1 −

Nb

2Nf
½1þ ϵCðxÞ�

�
σIB0 ðxÞ; ð1Þ

in the collisionless regime, to the leading order in ϵ and 1=Nf
expansions, and for physical situation d ¼ 2 or equivalently
ϵ ¼ 1. Here, σIB0 ðxÞ ¼ ðNfπ=4Þ tanhðx=4Þ is the interband
OC (in units of e2=h, set to one, hereafter) of a noninteracting

Dirac liquid, Nf is the number of four-component Dirac
fermion species (hence, for graphene and surface states of
topological insulatorsNf ¼ 2 and 1=2, respectively), andNb

counts the number of real order-parameter components.
The scaling of the universal function CðxÞ is displayed in
Fig. 2(a). Next, we show that, inside the critical regime, the
Drude part scales as

σD� ðxÞ ¼ NfF½GðNf; NbÞ
ffiffiffi
ϵ

p �δðxÞ; ð2Þ
with δðxÞ as the Dirac delta function, and F and G are two
universal functions of their arguments, which will be dis-
cussed below. The Drude peak for the noninteracting system
[σD0 ðxÞ] is recovered by setting ϵ ¼ 0, for which Fð0Þ ¼
2π ln 2 and σD0 ðxÞ ¼ 2Nfπ ln 2 δðxÞ. Otherwise, FðyÞ is a
positive-definite and monotonically decreasing function, see
Fig. 2(b). Therefore, due to a strong interaction between the
gapless fermionic and bosonic degrees of freedom, the OC
inside the quantum critical regime gets reduced in compari-
son to its counterpart in a noninteracting Dirac fluid. On the
insulating side of the transition OC displays activated
behavior.
GNY Model.—First, we briefly review the quintessential

features of the critical GNY theory in dþ 1 space-
(imaginary) time dimensions, with the Euclidean action
S ¼ R

dτddrðLf þ LY þ LbÞ, describing massless Dirac
fermions coupled with the critical bosonic excitations
corresponding to an OðNbÞ symmetry breaking order
parameter. The fermionic Lagrangian is given by

Lf ¼ Ψ†ðτ; rÞ
�
∂0 − i

Xd
j¼1

Γj∂j

�
Ψðτ; rÞ: ð3Þ

The Γ matrices satisfy the anticommuting Clifford algebra
fΓj;Γkg ¼ 2δjk. The coupling between fermionic and
bosonic excitations is captured by

LY ¼ g
XNb

α¼1

Φαðτ; rÞΨ†ðτ; rÞMαΨðτ; rÞ; ð4Þ

with g as the Yukawa coupling constant. Here, Γjs andMαs
are 8 × 8 Hermitian matrices, satisfying fΓj;Mαg ¼ 0. The
OðNbÞ symmetric purely bosonic action reads as

Lb ¼
XNb

α¼1

�
1

2
Φα

�
−
Xd
μ¼0

∂2
μ þm2

b

�
Φα þ

λ

4!
½Φ2

α�2
�
; ð5Þ

with m2
b as the tuning parameter for the transition, equal to

zero at the QCP, λ is the four-boson coupling, and
Φα ≡Φαðτ; rÞ. The Fermi (vF) and bosonic (vb) velocities
are assumed to be the same, due to the emergent Lorentz
symmetry, and set to be unity throughout [41].
Since both Yukawa (g) and the four boson (λ) couplings

are marginal in d ¼ 3, the flow of these two couplings can

FIG. 1. A schematic representation of the quantum phase
transition from a Dirac semimetal to a gapped ordered phase
through Gross-Neveu-Yukawa quantum critical point (red dot)
located atm2

b ¼ 0 and the associated quantum critical fan (shaded
region) at finite temperature. Here,m2

b is the bosonic mass and the
critical regime is occupied by a non-Fermi liquid. The scaling of
optical conductivity (OC) in this regime is given by Eq. (1)
[interband component] and Eq. (2) [Drude component]. The
quantum critical scaling ceases to operate at a (nonuniversal) high
energy scale EΛ ∼ 1 eV in a graphenelike system (red dotted
line), yielding a wide window of frequency (ω < 2EΛ) over
which our proposed universal scaling of OC remains operative.
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be controlled by an ϵ expansion about three spatial
dimensions. To the leading order in ϵ, the renormalization
group flow equations are given by

βg2 ¼ ϵg2 − ð2Nf þ 4 − NbÞg4;

βλ ¼ ϵλ − 4Nfg2ðλ − 6g2Þ − λ2

6
ð8þ NbÞ; ð6Þ

in the critical hyperplane defined by m2
b ¼ 0, in terms of

dimensionless coupling constants Xq−ϵ=ð8π2Þ → X for
X ¼ g2, λ. Here, q is a momentum scale defining the
infrared renormalization group β function for a coupling X
as βX ≡ −dX=d ln q. The above coupled flow equations
support only one fully stable fixed point located at

ðg2�; λ�Þ ¼
�
1;

3

a3
½a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 16Nfa3

q
�
�

ϵ

a1
; ð7Þ

also known as GNY critical point, where a1¼2Nfþ4−Nb,
a2 ¼ 4 − 2Nf − Nb, and a3 ¼ Nb þ 8. At this QCP, both
fermionic and bosonic excitations possess nontrivial
anomalous dimensions, respectively, given by ηf ¼
Nbg2�=2 and ηb ¼ 2Nfg2�, responsible for the absence of
sharp quasiparticles in its vicinity. Thus, the associated
quantum critical fan accommodates a non-Fermi liquid.
Also, the ratio of the fermionic (m2

f) and bosonic (m2
b)

masses assumes a universal ratio, given by

�
mb

mf

�
2

¼ λ�
3g2�

¼ Rm; ð8Þ

as we approach the GNYQCP from the ordered side, which
plays a crucial role in determining the scaling of the Drude
peak within the critical regime [Eqs. (13)–(16)].
Kubo formula.—Now, we compute the correction to the

OC at the GNY critical point separating a Dirac semimetal
and a gapped ordered state at both finite frequency and
temperature. To this end, we use the Kubo formula relating
the current-current correlation function to the conductivity,
yielding the interband part

σIBlmðωÞ ¼ 2πlim
δ→0

ℑΠlmðiΩ → ωþ iδ;q ¼ 0Þ
ω

; ð9Þ

and the Drude peak (at ω ¼ 0 and any finite T)

σDlmðωÞ ¼ −2π2δðωÞlim
δ→0

ℜΠlmðiΩ → ωþ iδ;q ¼ 0Þ: ð10Þ

Here, ΠlmðiΩ;qÞ is the Fourier transform of the current-
current correlator in the space and imaginary time
Πlmðτ; rÞ ¼ hjlðτ; rÞjmð0; 0Þi, while the fermionic current
is jlðτ; rÞ ¼ iΨ†ðτ; rÞΓ0ΓlΨðτ; rÞ, and l, m are spatial
indices. For an isotropic system, the conductivity satisfies
σIB;Dlm ðωÞ ¼ σIB;DðωÞδlm. Direct application of the Kubo

formulae yields the OC of a two-dimensional noninteract-
ing Dirac liquid, given by σIB0 ðxÞ and σD0 ðxÞ.
Interband optical conductivity.—First, we consider the

correction to the interband piece of the OC at the GNY
critical point, which solely arises from the fermionic sector,
since the critical bosonic excitations (composite objects of
fermions) are charge neutral [39]. Now, we use the fact
that the bare (B) and renormalized (R) fermion fields are
related through the wave-function renormalization (ZΨ) as
ΨB ¼ Z1=2

Ψ ΨR, which, in turn, allows us to express the bare
current-current correlator in terms of the renormalized one
according to hjljmiB ¼ Z2

ΨhjljmiR. Because of the gauge
invariance, the current does not receive any vertex renorm-
alization. The leading order correction to the conductivity
in the quantum-critical fan is then given by the wave-
function renormalization ZΨ, computed in the quantum
critical fan (i.e., for g2 ¼ g2�) and at a finite temperature T.
The wave function renormalization ZΨ, is ultimately related
to the fermionic self-energy at zero external momentum,
ΣfðiΩÞ, explicitly evaluated in the Supplemental Material
(SM) [40], yielding

ZΨðxÞ ¼ 1 −
1

2
g2Nb

�
1

ϵ
þ bþ f1ðxÞ

�
; ð11Þ

after the analytical continuation iΩ → ωþ iδ. The constant
b ¼ ½2 − γE þ lnð4πÞ�=2 ≈ 1.9769, with γE as the Euler-
Mascheroni constant, and f1ðxÞ is a purely real function of
a real argument [40], satisfying f1ðx → ∞Þ ≈ 2.184 86.
Now, using the form of the wave function renormalization,
we find that the conductivity receives a nontrivial correc-
tion at the non-Gaussian GNY critical point

σIB� ðxÞ ¼
�
1 − Nb

1þ ϵCðxÞ
2Nf þ 4 − Nb

�
σIB0 ðxÞ; ð12Þ

with CðxÞ≡ bþ f1ðxÞ, which to the leading order in the
large-Nf expansion leads to the result quoted in Eq. (1).
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FIG. 2. Scaling of two universal functions (a) CðxÞ and
(b) FðyÞ, respectively, governing the suppression of interband
[see Eq. (1)] and Drude [see Eq. (2)] components of the OC in the
vicinity of the fermionic critical point in two dimensions. Here,
x ¼ ℏω=ðkBTÞ and y ¼ mfðTÞ=ðkBTÞ.
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Correction to the Drude peak.—Next, we focus on the
correction to the Drude peak in the vicinity of the GNY
critical point. We compute this correction by approaching
the QCP from the ordered (gapped) side of the transition,
where both fermionic and bosonic excitations acquire a
finite mass. However, they both tend to vanish with a
universal ratio [see Eq. (8)] as the QCP is approached at
T ¼ 0. The form of the Drude peak is then given by [40]

σD ¼ 8π2NfδðωÞ
Z

d2k
ð2πÞ2

k2x
E2
k

�
−
∂nfðEkÞ
∂Ek

�
; ð13Þ

where nfðzÞ≡ ½ez=kBT þ 1�−1 is the Fermi-Dirac distribu-
tion function, and E2

k ¼ k2 þm2
fðTÞ is the dispersion of the

massive Dirac quasiparticles, ultimately yielding

σD� ðxÞ ¼ NfF
�
mfðTÞ
kBT

�
δðxÞ; ð14Þ

where the universal function FðyÞ reads

FðyÞ ¼ π

2

Z
∞

0

dk
k3

ðk2 þ y2Þcosh2ð1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ y2

p
Þ
: ð15Þ

The scaling of FðyÞ is shown in Fig. 2(b).
To extract the correction to the Drude peak in the

quantum critical fan, next, we compute the thermal mass
of the fermionic field [mfðTÞ] in this regime, where Tλ=mj,
Tg2=mj ∼

ffiffiffi
ϵ

p
≪ 1 for j ¼ f and b. An explicit calculation

is shown in the SM [40] and we find
�
mfðTÞ
kBT

�
2

¼ π2g2�Nb

½Rm − 1� ¼
π2Nb

6Nf
ϵþO

�
1

N2
f

�
; ð16Þ

to the leading order in ϵ and 1=Nf. Indeed, in the critical
regime mfðTÞ=ðkBTÞ ∼

ffiffiffi
ϵ

p
, since g2�, λ� ∼ ϵ, see Eq. (7).

This result, together with Eqs. (14) and (8), yields the
interaction mediated correction to the Drude peak in
the quantum critical fan, displayed in Eq. (2), with the
universal function GðNf; NbÞ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nb=ð6NfÞ

p
to the lead-

ing order in 1=Nf [40]. Most importantly, FðyÞ is a
monotonically decreasing function. Therefore, the weight
of the Drude peak also decreases following a universal
scaling function inside the quantum critical regime, while
retaining its delta function shape. It is worthwhile noticing
that FðyÞ is not Taylor expandable close to y ¼ 0, since it
originates from the derivative of the Fermi-Dirac distribu-
tion, which, itself, is not expandable about zero.
Long-range interaction.—Thus far, we have focused on

a strongly interacting Dirac liquid, residing in the close
proximity to a QCP, tuned by the short-range components
(ones appearing in an extended Hubbard model) of the
Coulomb interaction, which, in a real system, are always
accompanied by the long-range tail. Although the long-
range Coulomb interaction is believed not to alter the

universal nature of this transition [42,43], it modifies the
interband component of the OC in a d-dimensional Dirac
system according to

σIBd ¼ σIB0;d½1þ CdαðrÞlnd−2ðrÞ�; ð17Þ

at T ¼ 0 and for d ¼ 2 and 3. Here, α ¼ 2πe2=vF is the
fine structure constant, a function of the running renorm-
alization group scale r ¼ vFΛ=ðℏωÞ, with Λ as the ultra-
violet momentum cutoff for Dirac fermions. Cd is a
universal number, with C2 ¼ ð11 − 3πÞ=6 [44] and C3 ¼
1=ð3πÞ [45]. In two dimensions, the fine structure constant
is marginally irrelevant [46], αðrÞ ≈ 1= lnðrÞ for r ≫ 1, due
to a logarithmically slow increase of the Fermi velocity (vF)
in the infrared, in agreement with experiment [47].
Concomitantly, the enhancement of the OC due to the
long-range Coulomb interaction vanishes logarithmically
slowly as frequency ω → 0. Therefore, in a two-dimen-
sional interacting Dirac liquid, the correction to the OC at
the GNY critical point arises solely due to the strong
coupling between the fermionic and bosonic excitations
mediated by the finite-range interaction.
(3þ 1)-dimensions.—Finally, we briefly comment on

the correction to the OC at the GNY critical point in three
dimensional Dirac or Weyl systems, by focusing on the
interband piece at T ¼ 0. In a three-dimensional non-
interacting Dirac or Weyl liquid, σIB0;3 ¼ Nfe2ω=ð6hvFÞ,
while the fine-structure constant vanishes as αðrÞ ≈ 3π=
½Nf lnðrÞ� for r ≫ 1 and Nf ≫ 1 [48–50]. The logarithmic
correction to the OC in Eq. (17) for d ¼ 3 stems from the
violation of a hyperscaling hypothesis at the upper-critical
dimension [45]. However, marginal irrelevance of the fine-
structure constant conspires with the hyperscaling viola-
tion, leading to the following universal scaling of OC for
Nf ≫ 1

σIB� ¼ σIB0;3

�
1 −

Nb

2ϵ
g2� þ

1

Nf

�
: ð18Þ

The part ∼1=Nf stems from the long-range tail of the
Coulomb interaction. The quantum phase transition from a
Dirac or Weyl semimetal to an ordered phase in d ¼ 3 or
ϵ ¼ 0, driven by a short-range interaction, is mean-field
or Gaussian in nature (since g� ¼ λ� ¼ 0) [18]; see Eq. (6).
Thus, in d ¼ 3, the only correction to the OC that
ultimately survives is due to the long-range Coulomb
interaction, which is controlled via 1=Nf, and the above
expression with g2� ¼ 0 is an exact result to the leading
order in 1=Nf. This outcome is in stark contrast to the
situation in d ¼ 2, where only the correction due to short-
range Coulomb interaction survives in an interacting non-
Fermi liquid fixed point as ω → 0.
Discussion.—To summarize, we present the quantum

critical scaling of the OC at a relativistic fermionic QCP
in two dimensions, as well as in the corresponding strongly
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coupled non-Fermi liquid. We show that both interband and
Drude contributions decrease inside the critical regime in
comparison to their counterparts in a noninteracting Dirac
fluid, following universal scaling functions. This behavior
can also be investigated numerically using quantum
Monte Carlo simulations (see Refs. [29,32–35,51,52], for
example), and possibly by using gauge-gravity or holo-
graphic dualities [53]. In addition, the proposed 1=Nf
scaling of OC [see Eqs. (1), (12)] can be tested numerically
either (a) by externally changing the flavor number [17] or
(b) by introducing intersublattice (hence, without the infa-
mous sign problem) third-neighbor hopping in a graphene-
like model [54]. Furthermore, our findings may be relevant
in twisted bilayer graphene near so called “magic angles”
where sufficiently slow Dirac fermions can be susceptible
toward interaction driven broken symmetry phases, since
the Fermi velocity becomes ∼25 times smaller than that in
monolayer graphene, yielding nearly flat bands of
Dirac fermions (with Nf ¼ 4) [55,56], organic compound
α-ðBEDT − TTFÞ2I3, residing at the brink of excitonic
ordering [57], and given that the collisionless regime can
be accessed in experiments [58]. Our analysis being
restricted to the collisionless regime, cannot account for
the smearing of the Drude peak (since lifetime of carriers
τ → ∞). In the future, it will be interesting to investigate the
quantum critical transport of a relativistic non-Fermi liquid
in the collision dominated or hydrodynamic regime [25,59]
and find the crossover behavior of transport observables in a
strongly interacting Dirac system. Finally, our findings
may further motivate studies of the transport when
critical fermionic and bosonic fluctuations are coupled in
the vicinity of an extended Fermi surface, which can be
germane for many strongly correlated materials such as
cuprates, pnictides, and heavy-fermion compounds, for
example [1,60,61].
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