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We theoretically study noncoplanar spin textures in polar magnetic conductors. Starting from the Kondo
lattice model with the Rashba spin-orbit coupling, we derive an effective spin model with generalized
Ruderman-Kittel-Kasuya-Yosida interactions including the anisotropic and antisymmetric exchange
interactions. By performing simulated annealing for the effective model, we find that a vortex crystal
of Néel type is stabilized even in the absence of a magnetic field. Moreover, we demonstrate that a Bloch-
type vortex crystal, which is usually associated with the Dresselhaus spin-orbit coupling, can also be
realized in our Rashba-based model. A magnetic field turns the vortex crystals into Néel- and Bloch-type
Skyrmion-like crystals. Our results underscore that the interplay between the spin-orbit coupling and
itinerant magnetism brings fertile possibilities of noncoplanar magnetic orderings.
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Noncoplanar magnetic textures have attracted great
interest in condensed matter physics, as they often give
rise to topologically nontrivial quantum states and related
fascinating phenomena. The noncoplanar orders can simul-
taneously activate the scalar chirality, which is denoted as a
scalar triple product of spins Si · ðSj × SkÞ, in addition to
the primary magnetic order parameter. The scalar chirality
generates an emergent magnetic field for itinerant electrons
through the spin Berry phase mechanism [1], and hence,
has great potential to induce and control unconventional
quantum phenomena, such as the anomalous Hall effect
[2–5].
Such noncoplanar orders have been extensively studied

in noncentrosymmetric systems where the spin-orbit cou-
pling (SOC) plays an important role. For instance, hex-
agonal Skyrmion crystals with noncoplanar spin textures
emerge in noncentrosymmetric systems in an applied
magnetic field [6–8]. The Skyrmion crystals are classified
according to their vorticity and helicity. For instance, a
Bloch-type Skyrmion with the helicity �π=2 can be
stabilized in chiral magnets with the Dresselhaus
SOC [9–11] [Fig. 1(a)], while a Néel-type one with the
helicity 0 or π may appear in polar magnets with the Rashba
SOC [12,13] [Fig. 1(b)].
Besides the SOC, recent theoretical studies unveiled

alternative origins of similar noncoplanar spin textures,
e.g., frustrated exchange interactions and dipolar inter-
actions in localized spin systems [14–21], and the spin-
charge coupling between itinerant electron spins and
localized spins [22–34]. These mechanisms would be
useful not only to clarify an unknown origin of noncoplanar
orderings, e.g., in SrFeO3 [35], MnSc2S4 [36], and
CeAuSb2 [37], but also to provide a reference for exploring
further exotic spin textures.

In the present study, we push forward these theoretical
studies to a more realistic situation, by taking into account
both the SOC and the spin-charge coupling in magnetic
conductors. Our aim is to illuminate noncoplanar spin
textures induced by the interplay between the two cou-
plings. To this end, starting from the Kondo lattice model
with the SOC, we derive an effective spin model with
anisotropic and antisymmetric exchange interactions in
momentum space. We find that the effective model exhibits
a stable Néel-type vortex crystal (VC) even in the absence
of a magnetic field. Moreover, we show that a Bloch-type
VC, which is usually induced by the Dresselhaus SOC, can
also be realized within the same model. We also discuss
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FIG. 1. Schematic pictures of (a) Bloch-type and (b) Néel-type
spin textures. Right panels show the schematic Fermi surfaces
split by the SOC favoring each Skrymion texture: (a) Dresselhaus
type and (b) Rashba type. Arrows represent the spin polarization
on the Fermi surfaces.
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how these VCs evolve to Skyrmion-like crystals and
exhibit phase transitions to other spin states in an applied
magnetic field.
Let us consider the Kondo lattice model with the SOC on

a square lattice with the point group C4v. The following
analysis can be extended to any polar and chiral systems.
The Hamiltonian is given by

H ¼
X
kσ

ðεk − μÞc†kσckσ þ JK
X
kqσσ0

c†kσσσσ0ckþqσ0 · Sq

þ
X
k

gk · c†kσσσσ0ckσ0 ; ð1Þ

where c†kσ (ckσ) is a creation (annihilation) operator of an
itinerant electron at wave number k and spin σ. The first
term in Eq. (1) represents the kinetic motion of itinerant
electrons; εk is the energy dispersion of free electrons and
μ is the chemical potential. The second term represents the
Kondo coupling between itinerant electron spins and
localized spins; σ ¼ ðσx; σy; σzÞ is the vector of Pauli
matrices, Sq is the Fourier transform of a localized spin Si

defined at site i with the fixed length jSij ¼ 1, and JK is
the exchange coupling constant. The sign of JK is
irrelevant, as we regard the localized spins as classical
ones for simplicity. The third term in Eq. (1) represents
the SOC. We here consider the Rashba-type SOC with
polar systems in mind: gk ¼ ðgxk; gykÞ ∝ ðsin ky;− sin kxÞ,
which is induced by the mirror symmetry breaking with
respect to the square plane. Although related models
were studied in the context of an electron gas coupled
with magnetic impurities [38–44] and the Kondo lattice
model for large JK [45], we here consider the problem
on a discrete lattice in the weak-coupling regime, which
gives rise to a plethora of magnetic instabilities as shown
below.
Instead of directly studying the ground state of the

model in Eq. (1), which requires laborious computational
calculations, we here extract important magnetic contribu-
tions by deriving an effective spin model as follows [46].
First, we assume that JK is small enough compared to the
bandwidth of itinerant electrons. In the weak-coupling
regime with gk ¼ 0, the effective magnetic interaction
between localized spins mediated by itinerant electrons
is described by the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction, which is obtained by the second-
order perturbation with respect to JK [47–49]. Extending
the analysis to the model in Eq. (1) by including the SOC
term in the unperturbed Hamiltonian, we obtain

H ¼ −
J2K
4N

X
kq

X
σσ0

χ0kσσ0 ðHiso þHani þHDMÞ; ð2Þ

where

Hiso ¼ ðIσσ0 þ τxσσ0 ÞSq · S−q; ð3Þ

Hani ¼ ðIσσ0 − τxσσ0 Þ
X
ν≠ν0

½ðg̃νkg̃ν
0
kþqS

ν
qSν

0
−q þ H:c:Þ

þ g̃νkg̃
ν
kþqðSνqSν−q − Sν

0
qSν

0
−q − SzqSz−qÞ�; ð4Þ

HDM ¼
X
ν

ðiτzσσ0Gν
kq− − τyσσ0G

ν
kqþÞðSq × S−qÞν: ð5Þ

Here, Hiso describes the conventional RKKY interaction,
which is isotropic in spin space, while Hani and HDM are
additional anisotropic contributions arising from the SOC.
Hani is the anisotropic exchange interaction, and HDM is
the antisymmetric exchange interaction, corresponding to
the Dzyaloshinskii-Moriya (DM) interaction [50,51]. In
Eq. (2), χ0kσσ0 ¼ ½fðEkσÞ − fðEkþqσ0 Þ�=ðEkþqσ0 − EkσÞ rep-
resents the spin-dependent bare susceptibility of itinerant
electrons at the wave number k, where Ekσ ¼ εk − μþ
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgxkÞ2 þ ðgykÞ2

p
and fðEkσÞ is the Fermi distribution

function. In Eqs. (3)–(5), Iσσ0 and τμσσ0 (μ ¼ x, y, z) are the
identity and Pauli matrices in pseudospin space, respec-
tively, g̃νk ¼ gνk=jgkj, Gν

kq� ¼ g̃νkþq � g̃νk, and ν, ν0 ¼ x, y.
While the model in Eq. (2) includes complicated

interactions, the dominant contributions can be extracted
when χ0kσσ0 shows conspicuous peaks in the Brillouin zone.
This often happens when the Fermi surface is partially
nested in the lattice systems [32,34]. In this case, the
ordering vectors are set by the peaks of the bare suscep-
tibility and other q components do not play an important
role in selecting the most stable magnetic structure irre-
spective of the presence and absence of the SOC. On this
basis, we take the sum of the wave numbers in Eq. (2) by
the contributions from the peak wave numbers [52]. In the
case of the square lattice, there appear two or four pairs of
peaks, Qη (η ¼ 1, 2 or 1-4), which are orthogonal to
each other for η ¼ 1; 2, reflecting the fourfold rotational
symmetry of the point group C4v. In the absence of the
SOC (Hani ¼ HDM ¼ 0), the system with such conspicu-
ous peaks in χ0kσσ0 exhibits a noncoplanar spin texture
characterized by the two wave numbers, while it is not a
Skyrmion type [32,34]. The SOC is expected to increase a
chance for further exotic spin textures including Skyrmions
through the additional contributions in Hani and HDM.
Then, we end up with the effective spin model, whose

Hamiltonian is summarized as

H ¼ −2
X
η

�X
αβ

Jαβη SαQη
Sβ−Qη

þ iDη · ðSQη
× S−Qη

Þ
�

−H
X
i

Szi ; ð6Þ

where the sum of η is taken for the set of Qη giving the
multiple maxima in the bare susceptibility χ0kσσ0. J

αβ
η andDη
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are the coupling constants for symmetric and anti-
symmetric exchange interactions in momentum space
(α; β ¼ x, y, z), which are long ranged in real space.
We note that, while these exchange couplings are related to
the coefficients in Eqs. (3)–(5) and χ0kσσ0 , they vary in a
nontrivial manner in the lattice problems with itinerant
electrons, reflecting the structure of the bare susceptibility.
In Eq. (6), we added the Zeeman coupling to an external
magnetic field in the z direction. We omit the contributions
from the q ¼ 0 component in the exchange coupling in
Eq. (6), which may play a role in a uniform magnetic field,
as they do not bring a qualitative change in the following
results.
The number of independent coupling constants in the

model in Eq. (6) depends on the set of Qη. In the present
study, we consider the case with two Qη as Q1 ¼ ð0; Q�Þ
and Q2 ¼ ðQ�; 0Þ, which leads to four independent cou-
pling constants, Jxx, Jyy, Jzz, and D: Jxx1 ¼ Jyy2 ≡ Jxx,
Jyy1 ¼ Jxx2 ≡ Jyy, Jzz1 ¼ Jzz2 ≡ Jzz, and Dx

1 ¼ Dy
2 ≡D (all

other components are zero). The extension to other cases is
straightforward. In the following calculations, we take
Q� ¼ π=4 and set the energy unit as Jxx þ Jyy þ Jzz ¼ 1
without loss of generality.
We investigate the magnetic phase diagram of the

effective spin model in Eq. (6) on the square lattice by
performing simulated annealing from high temperature
[53]. Our simulations are carried out with the standard
Metropolis local updates under periodic boundary condi-
tions in both directions. We present the results for the
system with N ¼ 482 sites. In the simulation, we first
perform simulated annealing to find the low-energy con-
figuration by gradually reducing the temperature with the
rate Tnþ1 ¼ αTn, where Tn is the temperature in the nth
step. We set the initial temperature T0 ¼ 10−1 − 100 and
take the coefficient α ¼ 0.9995–0.9999. The final temper-
ature, which is typically taken at T ¼ 10−4, is reached after
105–106 Monte Carlo sweeps in total.
Figure 2(a) shows the Jzz-H phase diagram for the model

in Eq. (6) obtained by the simulated annealing for Jxx ¼ Jyy

and D ¼ 0.3. We find three phases in the parameter range,
which are distinguished by computing the spin structure
factor defined as Sααs ðqÞ ¼ ð1=NÞPj;lhSαj Sαl ieiq·ðrj−rlÞ,
where α ¼ x, y, z. We also compute the magnetizationM ¼
hð1=NÞPiS

z
i i and the uniform scalar chirality defined as

χsc ¼ hð1=NÞPj;δ¼�1Sj · ðSjþδx̂ × SjþδŷÞi, where x̂ and ŷ
are the unit translation vectors in the x and y direction,
respectively [54].
The single-Q (1Q) helical state appears for small H and

large Jzz. It has a cycloidal structure, e.g., Si ∝
½0; ay cosðQ1 · riÞ; az sinðQ1 · riÞ� or Si ∝ ½ax cosðQ2 · riÞ;
0; az sinðQ2 · riÞ�. Note that this is not a simple single-Q
order: the spiral is not circular but elliptic with the
coefficients az > ax, ay (az < ax, ay) for Jzz > Jxx, Jyy

(Jzz < Jxx, Jyy).

Meanwhile, in the smaller Jzz region, the system shows a
periodic array of magnetic vortices. This spin texture is
characterized by two wave numbers (double-Q): the spin
structure factor has the peaks at q ¼ �Q1 and �Q2, in
addition to the uniform component at q ¼ 0 forH ≠ 0. The
real-space spin configuration is described as the equal
superposition of two helices,

Si ∝ ðcosQ2; cosQ1; azðsinQ1 þ sinQ2Þ þ bÞ; ð7Þ

where Qη ¼ Qη · ri þ jQηj=2; the coefficients az and b
depend on Jzz and H. Figures 2(c) and 2(d) show typical
real-space spin configurations obtained from a snapshot of
the simulated annealing at H ¼ 0 and 0.3 for Jzz ¼ 0,
respectively. At H ¼ 0, the spin configuration consists of a
periodic array of vortices with the positive Szi (helicity π)
and antivortices with the negative Szi (helicity 0), both of
which are of Néel type [see Fig. 1(b)]. Thus, this is regarded
as a Néel-type vortex crystal (N-VC). In the N-VC state,
although both vortex and antivortex carry nonzero scalar
chirality, the net value vanishes due to the cancellation
between them. With an increase of H, the vortices extend
and the antivortices shrink, which leads to a Skyrmion-like
crystal of Néel type, as shown in Fig. 2(d) [55]. In this
region, χsc becomes nonzero, as plotted in Fig. 2(b). While
further increasing H, the spins are aligned along the
field direction, and hence, χsc is suppressed as shown in
Fig. 2(b).
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FIG. 2. (a) Magnetic phase diagram while changing Jzz and H
at D ¼ 0.3 and Jxx ¼ Jyy (Jxx þ Jyy þ Jzz ¼ 1). 1Q helical,
N-VC, and Ferro represent the single-Q helical, the Néel-type
vortex crystal, and the forced ferromagnetic states, respectively.
(b) Magnetization curves denoted by filled symbols (left axis)
and the net scalar chirality denoted by open symbols (right axis)
for Jzz ¼ 0, 0.16, 1=3, and 0.64. (c),(d) Snapshots of the spin
configurations in the N-VC phase for Jzz ¼ 0 at (c) H ¼ 0 and
(d) H ¼ 0.3. The arrows and contour denote the xy and z
components of the spin moments, respectively.
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The remarkable point is that the N-VC phase is stable
even in the absence of the magnetic field. As mentioned in
the introduction, although a Néel-type Skyrmion is
expected for the Rashba SOC, it is usually stabilized in
an applied magnetic field. Our results indicate that itinerant
nature of electrons increases a chance for the Néel-type spin
textures.
We plot the magnetization curves at several Jzz in

Fig. 2(b). In the region where the N-VC phase is stabilized
at H ¼ 0 for small Jzz (Jzz ≲ 0.06), the magnetization
continuously increases with H and smoothly approaches
the saturation in the forced ferromagnetic state at H ∼ 1.
Meanwhile, the magnetization jumps at the phase bounda-
ries between the N-VC and the ferromagnetic state as well
as between N-VC and 1Q helical, as shown in Fig. 2(b) for
Jzz ¼ 0.16 and 1=3. We note that this behavior is similar to
the case in the Heisenberg model with the short-ranged DM
interaction [56–58]. For larger Jzz ¼ 0.64, there is a
magnetization jump between the 1Q helical and ferromag-
netic states.
Next, let us discuss another type of VCs found in the

model in Eq. (6) with different anisotropy. Figure 3(a)
shows the Jxx-D phase diagram at H ¼ 0 and Jyy ¼ Jzz

obtained from the simulated annealing. There are additional
four phases besides the 1Q helical state: 1Q helical II,
Bloch-type vortex crystal (B-VC), double-Q (2Q) coplanar,
and 2Q noncoplanar states.
The upper-left region of the phase diagram is dominated

by the 1Q helical states. The difference between the 1Q
helical and 1Q helical II states lies in the x (y) component

of the spin configuration for the ordering vectorQ1 (Q2): it
becomes nonzero in the 1Q helical II state. On the other
hand, the lower-right region is occupied by the double-Q
(2Q) states. The spin configuration in the 2Q coplanar state
is expressed as Si ∝ ½cosðQ1 þ πÞ; cosQ2; 0�. In the small
Jxx and D region, the system shows a 2Q noncoplanar
order, whose spin configuration is given by Si ∝
½ax cosðQ1 þ πÞ þ a0x cosQ2; a0y cosQ2 þ ay cosðQ1 þ πÞ;
az sinQ2� where aμ and a0μ take different values. The
net scalar chirality is zero in both 2Q states, although the
latter state accompanies a chiral density wave modulated
with Q1.
In the competing region between the 1Q and 2Q states,

we find that the system exhibits another VC. The real-space
spin configuration is approximately given by

Si ∝

0
B@

cosðQ1 þ πÞ þ ax cosQ2

cosQ2 þ ax cosðQ1 þ πÞ
azðsinQ1 þ sinQ2Þ

1
CA

T

; ð8Þ

where ax < 1 and T denotes the transpose. While this
double-Q state has a similar periodic array of noncoplanar
spin textures with positive and negative Szi (helicity
≃ − π=2 and ≃π=2, respectively), it has a distinct aspect
from the N-VC state in Eq. (7): the spins rotate in the
tangential planes when moving from core to periphery, as
shown in Fig. 3(c). This swirling texture is similar to the
Bloch-type Skyrmion in Fig. 1(a), and hence, we call this
state the Bloch-type vortex crystal (B-VC).
This is, to the best of our knowledge, the first example of

the stable B-VC state without the Dresselhaus SOC. It is
also surprising that the B-VC state is stable even at zero
field, similar to the N-VC state. From our results, the
emergence of B-VC is understood from the competition
between the anisotropic symmetric exchange and the
antisymmetric exchange. The former tends to favor the
2Q coplanar state discussed above, while the latter tends to
favor the 1Q cycloidal state or the N-VC in Eq. (7). Indeed,
the spin configuration of B-VC in Eq. (8) is regarded as a
superposition of the 2Q and N-VC textures.
Finally, let us study the effect of the magnetic field on the

B-VC. We plot the magnetization and the scalar chirality at
Jxx ¼ 0.5625 and D ¼ 0.3 in Fig. 3(b). Both quantities
become nonzero for H > 0. This is because the B-VC state
evolves into a Skyrmion-like crystal while extending the
positive-Szi region, as shown in Fig. 3(d). With a further
increase of H, the B-VC phase is replaced by the 2Q
coplanar state with an additional ferromagnetic component
induced by the magnetic field for H ≳ 0.285. At the same
time, the scalar chirality vanishes. There is a small jump in
the magnetization curve suggesting a discontinuous phase
transition, although a more careful analysis is required to
settle this point.
To summarize, we have theoretically shown that the

interplay between the SOC and the spin-charge coupling in
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FIG. 3. (a) Phase diagram in the Jxx-D plane at H ¼ 0 for
Jyy ¼ Jzz. B-VC represents the Bloch-type vortex crystal state.
(b) Magnetization curve denoted as filled symbols (left axis) and
the net scalar chirality denoted as open symbols (right axis) for
Jxx ¼ 0.5625 and D ¼ 0.3. (c),(d) Snapshots of the spin con-
figurations in the B-VC phase for Jxx ¼ 0.5625 and D ¼ 0.3 at
(c) H ¼ 0 and (d)H ¼ 0.235. The arrows and contour denote the
xy and z components of the spin moments, respectively.
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itinerant magnets gives rise to fertile possibilities of exotic
magnetic orderings. Starting from the Kondo lattice model
with the Rashba SOC for polar magnetic conductors, we
derived an effective spin model with long-ranged aniso-
tropic and antisymmetric exchange interactions. By simu-
lated annealing, we found that the model exhibits VCs of
both Néel and Bloch type even in the absence of a magnetic
field. The latter Bloch-type one is rather surprising, as it is
usually induced by the Dresselhaus SOC. In an applied
magnetic field, we showed that both VCs turn into
Skyrmion-like textures. Systematic analyses in a wider
range of the model parameters have recently been pub-
lished in Ref. [59].
Our results indicate that a variety of noncoplanar spin

textures of vortex and skrymion types can be induced and
controlled by the form of the SOC and the electronic
dispersion. The SOC would be designed by the surface and
heterostructures, and also controlled by an external electric
field. The electronic dispersion is inherit to the materials,
while it would be modulated by an external pressure and a
strain in the heterostructures. Thus, we believe that our
results are useful not only to give an insight into the origin
of complex noncoplanar spin structures observed in experi-
ments, e.g., for monolayer metals on substrates [60–65],
but also to pave the way for exploring further exotic spin
textures in polar and chiral systems.
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