
 

Marginally Self-Averaging One-Dimensional Localization in Bilayer Graphene

Md. Ali Aamir,1,* Paritosh Karnatak,1,† Aditya Jayaraman,1,‡ T. Phanindra Sai,1 T. V. Ramakrishnan,1

Rajdeep Sensarma,2 and Arindam Ghosh1,3
1Department of Physics, Indian Institute of Science, Bangalore 560 012, India

2Department of Theoretical Physics, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Mumbai 400005, India
3Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560 012, India

(Received 28 August 2017; revised manuscript received 7 July 2018; published 26 September 2018)

The combination of a field-tunable band gap, topological edge states, and valleys in the band structure
makes insulating bilayer graphene a unique localized system, where the scaling laws of dimensionless
conductance g remain largely unexplored. Here we show that the relative fluctuations in ln g with the
varying chemical potential, in strongly insulating bilayer graphene (BLG), decay nearly logarithmically for
a channel length up to L=ξ ≈ 20, where ξ is the localization length. This “marginal” self-averaging, and the
corresponding dependence of hln gi on L, suggests that transport in strongly gapped BLG occurs along
strictly one-dimensional channels, where ξ ≈ 0.5� 0.1 μmwas found to be much longer than that expected
from the bulk band gap. Our experiment reveals a nontrivial localization mechanism in gapped BLG,
governed by transport along robust edge modes.
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The nature of subgap electrical transport in bilayer
graphene (BLG) at large transverse electric fields (D) has
led to considerable debate [1–6]. D lifts the interlayer
symmetry, opening a band gap in the quasiparticle energy
spectrum.At largeD, the charge carriers in BLG are strongly
localized when the Fermi level is tuned close to the charge
neutrality point (CNP) [1]. Moreover, gapped BLG behaves
as a “marginal topological insulator,” where the finite Berry
phase and field-induced inversion symmetry breaking lead to
topologically protected one-dimensional conduction modes
along specific edge and stacking boundary configurations
[7–9]. While this has been experimentally verified through
observation of the valley Hall effect [10,11] and ballistic 1D
channels along artificial [12] and natural [13] stacking
boundaries, the topological properties also raise doubts on
the current understanding of the localized state transport in
gapped BLG at low temperature (T < 50 K). Although
initial results were analyzed in terms of two-dimensional
Mott-type variable range hopping (VRH) associated with
localized states in the bulk [1–4,14], recent supercurrent
interferometry experiments [5,6] suggest strong edge-mode
transport in short gapped BLG transistors. While this seems
consistent with the apparent saturation of g at large D
reported recently [6], the dimensionality of localized state
transport in generic gapped BLG remains uncertain so far.
In BLG subjected to large D at low T, the localization at

the edge (due to short-range lattice defects, chemical
adsorbates, etc.) and that in the gapped bulk are hard to
distinguish because of limited experimental temperature
range for VRH. Here, we have followed a new route based
on evaluating the full conductance statistics in the insulat-
ing regime and we specifically study its self-averaging

properties. A macroscopic variable X in a disordered system
of linear dimension L is spatially ergodic, or self-averaging,
when the relative fluctuations RX ¼ hðΔXÞ2i=hXi2 → 0 as
L → ∞, where h� � �i represents averaging over different
realizations of disorder. For strongly localized noninteracting
carriers, the electrical conductance g (in units of e2=h) does
not self-average, but the logarithm of g does [15–18], in a
manner that is uniquely sensitive to the dimensionality and
the scaling properties ofAnderson localization forL ≫ ξ, the
localization length [19–24]. In two and three dimensions, the
ensemble fluctuations in ln g are strongly self-averagingwith
Rln g ∼ L−d (d ¼ 2, 3) [20,24], whereas in 1D disordered
systems at finite T, ln g is only marginally self-averaging
because Rln g decays logarithmically with L [19–21]. This
purely 1D effect, which so far remains experimentally
elusive, to the best of our knowledge, is predicted to occur
because the conductance of the system is determined
primarily by the most resistive, but unavoidable, hop at
the percolation threshold [22]. To determineRln g, we directly
obtain themean and thevariance of ln g bymeasuring the full
conductance probability distribution function (PDF) in the
localized state for many dual-gated BLG devices with
varying channel lengths. We find that for small electric
fields (typically jDj≲ 0.5 V=nm), the relative fluctuations in
ln g with the Fermi level close to the CNP decay with L as
∼1=L2, but the decay becomes nearly logarithmic at larger
D—a characteristic of strictly 1D localized transport.
The dual-gated BLG channels were created with

mechanical exfoliation, followed by either one (top) or
both sides covered with hexagonal boron nitride (hBN).
Both surface and edge-contacting methods were adopted
[25], and the top gate length defines the channel length L.
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A representative schematic of an edge-contacted device is
shown in Fig. 1(a), and more details can be found in
Ref. [26]. We have studied the conductance statistics of
20 BLG channels with L ranging from ∼0.7 to 19.5 μm in
different BLG flakes with channel widths ranging from
∼1.0 to 3.1 μm. Although measurements were carried out
down to ∼20 mK, the conductance becomes nearly insen-
sitive to T below ≲1 K in all devices in the localized
regime [Fig. 3(c)]. Figure 1(b) illustrates the typical transfer
characteristics of gated BLG, obtained at T ¼ 275 mK in
device Dev3 with L ¼ 1.28 μm, where the two-probe
conductance g is shown as a function of the top gate
voltage (V tg) at fixed backgate voltages (Vbg).
Figure 1(b) also shows that the conductance at CNP,

gCNP ≪ 1 for large values of jVbgj, which implies strong
localization of carriers at the center of the band gap as jDj
increases. Between jDj ¼ 0 and ≲0.4 V=nm, when locali-
zation in the bulk is weak, the variation in gCNP with D is
device dependent. However, for jDj > 0.5 V=nm, gCNP
decreases nearly exponentially in almost all our devices
irrespective ofL [Fig. 1(c)]. The absence of saturation in gCNP
at large D confirms that there are no accidental stacking or
grain boundaries that shunt the source and drain leads [13],
and that L > ξ in all devices. To avoid gate leakage, the
maximum jDj was limited to ≈0.9–1.3 V=nm, which, for
longer devices, led to gCNP as low as ∼10−3–10−4.
The key feature of the transfer characteristics in Fig. 1(b) is

the strong relative fluctuations in g in the vicinity of the
CNP, which become more apparent as jDj increases. The

fluctuations are remarkably reproducible as the Fermi level
is varied, as illustrated in Fig. 1(e) with device Dev6
(L ¼ 2.92 μm) at T ¼ 0.03 K and jDj ¼ 0.75 V=nm.
The panels of Fig. 1(e) represent three separate regimes
from metallic (large n) to strongly localized (CNP,
n ≈ 0 × 1016 m−2) transport, where four traces of g within
the window δn ¼ 0.36 × 1016 m−2 demonstrate the repro-
ducibility, and confirm negligible contribution from time-
dependent noise [25,29]. Within δn, which is similar to
the spatial variation in carrier density typically present
in BLG [30], the fluctuations reflect traversing across
the microscopic realizations at a fixed point in the phase
space [19,20,22].
To quantify, we have first calculated the variance hðΔgÞ2i

within δn (consisting of ≈400 points or realizations) and
shown it as a function of n in Fig. 1(f) for three values ofD.
At large n (typically jnj > 1 × 1016 m−2), the onset of a
quasimetallic or weakly localized regime is characterized
by g≳ 1, where hðΔgÞ2i saturates to ≈0.1–1, irrespective of
D. This is universal conductance fluctuations due to
quantum interference of multiply backscattered electron
waves [31,32]. Since the Fermi level lies within the
conduction or valence bands, this is a bulk phenomenon,
expected for diffusive 2D disordered systems when the
phase coherence length is similar to L. As jnj decreases,
hðΔgÞ2i decreases, exhibiting a minimum around the CNP.
The reduction in hðΔgÞ2i at CNP is weak forD ¼ 0 V=nm,
but is nearly 5 orders of magnitude for jDj ≥ 0.6 V=nm.
The fluctuations in the localized regime are largely immune
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FIG. 1. Device characteristics and conductance fluctuations. (a) Device schematic. (b) Transfer characteristics (g − V tg) for a few Vbg
at 275 mK. (c) Mean conductance hgCNPi at the charge neutrality point (CNP) as a function of D for several devices with different
channel lengths. Inset shows extrapolated values of hgCNPi to D ¼ 0 V=nm. (d) Carrier density (n) dependence of hgi for
jDj ¼ 0.75 V=nm. (e) Conductance fluctuations as a function of small variations in n induced by the top gate at three different
points marked in (d). (f) Variance of conductance fluctuations hðΔgÞ2i as a function of n for several D.
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to contact effects [25], where the channel conductance
is at least an order of magnitude lower than that of the
contacts.
Fluctuations in g with gate voltage in the strongly

localized regime may be caused by inhomogeneous charge
distribution or single-particle localized states in the bulk of
the BLG [33] through, e.g., local charging of electron-hole
puddles [34] or multiple transmission resonances [35].
However, direct charging or resonance effects are expected
to decay rapidly for L≳O½100 nm�, the typical scale of
inhomogeneity. Such fluctuations may also arise in dis-
ordered quasi-1D or (short) 2D systems due to the extreme
sensitivity of the critical resistance-determining hop to the
local chemical potential [36], as shown for short con-
ducting channels in silicon and semiconductor heterostruc-
tures [22,37,38]. This mechanism manifests in the PDF of
ln g that approaches a Gaussian for large L [17,20,21,23],
and the characteristic L dependence of the mean and
variance of ln g depend sensitively on the dimensionality
of the system [19–21].
Figures 2(a)–2(d) show the PDF of the fluctuations in g

observed within the δnwindow around the CNP for different
values of D and L. Figures 2(a) and 2(b) present data from
device Dev10 with L ¼ 3.68 μm at different D. At D ¼
0 V=nm [Fig. 2(a)], the device is quasimetallic (gCNP ≃ 2),
and thePDFof gCNP is close to aGaussian, symmetric around
hgCNPi (dashed line). However, at large jDj of 0.75 V=nm

[Fig. 2(b)], the device is strongly localized at the CNP with
modal gCNP ∼ 0.01, and the PDF in gCNP is strongly
asymmetric around the peak. Instead, as shown in the inset
of Fig. 2(b), the PDF of ln gCNP is symmetric around
hln gCNPi, and corresponds closely to a Gaussian distribution
(solid line). The log-normal PDF in gCNP is observed for all
but oneL at largeD (typically jDj≳ 0.5 V=nm, seeRef. [26]
for details), as illustrated with two other devices in Figs. 2(c)
and 2(d). Occasionally, the distribution can exhibit weak
asymmetry due to the blocking effect or “optimal shorts or
punctures” in long and short channels, respectively [21,22]
(Fig. S3 of Supplemental Material [26]).
Log-normal conductance PDF in strongly localized

systems, when L ≫ ξ, has been analytically shown in
1D systems [17,18], whereas only numerically in higher
dimensions [24,39]. The Gaussian fits to the PDFs allow a
direct evaluation of hln gCNPi and varðln gCNPÞ with varying
D and L, shown in Figs. 2(e) and 2(f), respectively.
Quantitatively, the mean conductance of a 1D disordered
system can be expressed as [20,21]

hln gi ≈ −
�
T0

T

�
1=2

fðL=ξ; T0=TÞ; ð1Þ

where T0 ¼ 1=kBξN, and N is the 1D density of states at
the Fermi level. The functional form of f depends on the
details of the hopping mechanism. Serota, Kalia, and Lee
(SKL) [20] considered that selective links which are the
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FIG. 2. Conductance distribution. Probability distribution function of conductance [PðgCNPÞ and Pðln gCNPÞ] around the CNP for
different L and D, with a fixed length L ¼ 3.68 μm at (a) D ¼ 0 V=nm and (b) jDj ¼ 0.75 V=nm; (c),(d) for a fixed jDj ¼ 0.75 V=nm
at (c) L ¼ 0.67 μm and (d) L ¼ 10.48 μm. Insets in (b)–(d) show the corresponding probability distributions of ln gCNP. The dashed and
solid lines represent normal and log-normal distributions, respectively. (e) Average logarithm of conductance around the CNP
(hln gCNPi) as a function of L for jDj ¼ 0.75 V=nm. The expected variations of hln gCNPi from SKL [20] (black solid line), RR [21] (red
solid line), and Anderson model [17] (green dashed line) are also indicated. The error bars indicate the standard deviation of hln gCNPi
over ensemble variations. (f) The variance of ln gCNP, varðln gCNPÞ, as a function of channel length L for jDj ¼ 0.75 V=nm. The L
dependence of variance expected from SKL, RR, and Anderson model, with ξ ≈ 0.5 μm, are shown. The error bars represent the
uncertainty in log-normal fits.
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weakest dominate the net conductance, and showed that
f ≈ ½lnð2L=ξÞ�1=2. On the other hand, Raikh and Ruzin
(RR) [21] introduced the concept of an optimal break in the
phase space of energy and position of the localized
states and derived f≈fln½ðL=ξÞðT=T0Þ1=2ln1=2ðL=ξÞ�g1=2.
Moreover, the variance of conductance for a 1D disordered
system is predicted to exhibit a logarithmic decrease
[∼½ln ð2L=ξÞ�−1] [20,21]. Therefore, the relative fluctua-
tions, obtained by dividing varðln gCNPÞ with the corre-
sponding hln gCNPi2, are expected to only marginally decay
with L as Rln g ∼ ½ln ð2L=ξÞ�−2 in 1D.
Figure 3(a) shows the L dependence of the rela-

tive fluctuations Rln g in the strongly localized regime
(jDj≳ 0.5 V=nm). Clearly, Rln g remains nearly constant
or decreases marginally even as L increases by more than
an order of magnitude. This represents near absence of self-
averaging in the localized BLG transport. While SKL and
RR [20,21] generally capture the logarithmic decay in self-
averaging with L [solid lines in Fig. 3(a)], we emphasize
that the marginal self-averaging behavior is a model-
independent phenomenon. This is expected in a randomly
disordered purely 1D system because the most resistive link
cannot be bypassed with an increasing system size.
Intriguingly, the best fit to the data, both by SKL and
RR, yields a similar estimate of ξ ≈ 0.5 μm. This estimate
exceeds the localization length ∼ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2m�Δ

p
∼ 3–10 nm

due to the bulk band gap (Δ) by nearly 2 orders, but is
similar to the length scale of short-range edge defects and
intervalley scattering [40], suggesting transport along the
BLG edge [6]. The insensitivity of Rln g to the magnitude of
D for jDj≳ 0.5 V=nm further suggests that, beyond a
certain gap, the bulk of the BLG becomes largely incon-
sequential to the hopping transport. Importantly, the self-
averaging properties expected in two dimensions are
recovered at low jDj, where bulk transport contributes
significantly, and manifest in Rln g ∼ 1=L2 [20,24] for jDj ≲
0.5 V=nm [inset of Fig. 3(a)].
The hln gCNPi2 and the varðln gCNPÞ, shown in Figs. 2(e)

and 2(f), respectively, can also be roughly described by the
SKL andRRmodelswith the same ξ ≈ 0.5� 0.1 μmas used
above but are inconsistent with the form expected from the
T ¼ 0 K Anderson localization model [17]. Importantly,
both SKLandRRmodels suggest hln gi ∼ −ðT0=TÞ1=2 in the
leadingorder,which is indeed observed in our experiments in
the range T ≳ 1 K as shown in Fig. 3(c).
Alternative edge-bound transport processes, in particu-

lar, those due to lateral confinement at the BLG boundary
[5], cannot be completely ruled out. However, the inherent
tendency to bypass around strong disorder renders a quasi-
1D nature to these channels and it is unlikely that such a
mechanism would lead to the suppression of self-averag-
ing, which is a strictly 1D phenomenon. The self-averaging
may also be absent in specific cases of fractal disorder
landscape [41] or proximity to critical point [24], which are

not likely in the BLG devices. Thus, in view of the
theoretical [7] and recent experimental reports [5,6], a
likely mechanism is hopping via low-energy electronic
states of disordered edges in BLG [see Fig. 3(b)]. Notably,
the observed prefactor g0 ∼ 2–6 in the exponential variation
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FIG. 3. Self-averaging of ln gCNP in gapped bilayer graphene.
(a) Relative fluctuations Rln g ¼ varðln gCNPÞ=hln gCNPi2 as a
function of L for high jDj (> 0.5 V=nm). The solid lines
represent a logarithmic decay Rln g ∝ ½ln ð2L=ξÞ�−2 expected from
the SKL and RR models with ξ ≈ 0.5 μm. Inset shows Rln g

versus L for jDj ¼ 0.3, 0.45, and 0.5 V=nm. Here, strong self-
averaging is indicated by the decay in Rln g as Rln g ∝ L−2 (solid
line). The error bars have been computed as the net error
from uncorrelated relative errors in hln gCNPi and varðln gCNPÞ.
(b) Schematic depicting hopping transport along disordered 1D
edge of the bilayer graphene with gapped bulk. (c) hgCNPi as a
function of T−0.5 for three devices at a fixed jDj ¼ 0.75 V=nm,
where the fits hgi ∼ exp−ðT0=TÞ1=2 indicate the validity of 1D
hopping transport.
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of gCNP ¼ g0 expð−αjDjÞ for jDj≳ 0.4 V=nm [Fig. 1(c),
inset] is similar to that expected in the localized edge
transport [7], although the manner by whichDmodifies the
tunneling probability of charge between two adjacent
fragments needs further understanding (here, α is a
device-dependent parameter).
Finally, we note an intriguing feature in the T depend-

ence of conductance in the strongly localized phase
(jDj ¼ 0.75 V=nm) as shown in Fig. 3(c), where
ln gCNP½∼ − ðT0=TÞ1=2� extrapolates to a prefactor of the
order of the conductance quantum (∼0.5e2=h–2e2=h) in
three separate channels. While 1D localized channels may
naturally exhibit this in the T → ∞ limit [42], the universal
prefactor in localized 2D electron systems has previously
been attributed to electron-electron interaction-driven
hopping transition [43,44]. In localized 1D systems [45],
the effect of electron-electron interaction on the hopping
mechanism remains poorly understood, compounded by the
difficulty in distinguishing the Efros-Shklovskii mechanism
[46] with ln g ∼ −ðT0=TÞ1=2, from the Mott hopping law.
Nonetheless, recent spectroscopy [47] and transport [48]
experiments reveal strong on-site electron-electron interac-
tion along the edges of graphene.
In summary, our experiment probes self-averaging of the

logarithm of conductance in strongly localized bilayer
graphene with full conductance statistics as a function of
the device length and band gap. We observed a logarithmi-
cally slow marginal self-averaging, which is a strictly one-
dimensional phenomenon, and may be connected to an
interplay of topological states at the bilayer graphene edge
and frozen disorder (edge lattice defects).
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