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The relation between chiral edge modes and bulk Chern numbers of quantum Hall insulators is a
paradigmatic example of bulk-boundary correspondence. We show that the chiral edge modes are not
strictly tied to the Chern numbers defined by a non-Hermitian Bloch Hamiltonian. This breakdown of
conventional bulk-boundary correspondence stems from the non-Bloch-wave behavior of eigenstates
(non-Hermitian skin effect), which generates pronounced deviations of phase diagrams from the Bloch
theory. We introduce non-Bloch Chern numbers that faithfully predict the numbers of chiral edge modes.
The theory is backed up by the open-boundary energy spectra, dynamics, and phase diagram of
representative lattice models. Our results highlight a unique feature of non-Hermitian bands and suggest
a non-Bloch framework to characterize their topology.
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Hamiltonians are Hermitian in standard quantum
mechanics. Nevertheless, non-Hermitian Hamiltonians
[1,2] are highly useful in describing many phenomena
such as various open systems [3–12] and waves propaga-
tions with gain and loss [13–39]. Recently, topological
phenomena in non-Hermitian systems have attracted
considerable attention. For example, an electron’s non-
Hermitian self-energy stemming from disorder scatterings
or electron-electron interactions [40–42] can generate novel
topological effects such as bulk Fermi arcs connecting
exceptional points [40,41] (a photonic counterpart has been
observed experimentally [43]). The interplay between non-
Hermiticity and topology has been a growing field with a
host of interesting theoretical [44–75] and experimental
[76–82] progresses witnessed in recent years.
A central principle of topological states is the bulk-

boundary (or bulk-edge) correspondence, which asserts
that the robust boundary states are tied to the bulk
topological invariants. Within the band theory, the bulk
topological invariants are defined using the Bloch
Hamiltonian [83–86]. This has been well understood in
the usual context of Hermitian Hamiltonians; nevertheless,
it is a subtle issue to generalize this correspondence to non-
Hermitian systems [44–48,53–56]. As demonstrated
numerically [46,53,54,56], the bulk spectra of one-
dimensional (1D) open-boundary systems dramatically
differ from those with periodic boundary condition, sug-
gesting a breakdown of bulk-boundary correspondence.
This issue has been resolved [56] in 1D non-Hermitian
Su-Schrieffer-Heeger (SSH) model: the topological end
modes are determined by the non-Bloch winding number
[56] instead of topological invariants defined by Bloch
Hamiltonian [45–52], which suggests a generalized bulk-
boundary correspondence [56].

However, the general implications of these results based
solely on a simple 1D model remain to be understood (e.g.,
is the physics specific to 1D?). Moreover, the topology of
this 1D model requires a chiral symmetry [85], which is
often fragile in real systems. Thus, we are motivated to
study 2D non-Hermitian Chern insulators whose robust-
ness is independent of symmetries [87–90]. In addition,
non-Hermitian Chern bands are relevant to a number of
physical systems (e.g., photonic Chern insulators [37] with
gain or loss, topological-insulator lasers [75,91], interacting
or disordered electron systems [40]). They have been
characterized by non-Hermitian generalizations of Bloch
Chern numbers [44,45], which are expected to predict the
edge states.
In this Letter, we uncover an unexpected bulk-boundary

correspondence of non-Hermitian Chern bands. We find
that the chiral edge states are not strictly related to the
Chern numbers of non-Hermitian Bloch Hamiltonians.
More remarkably, in spite of this breakdown of conven-
tional bulk-boundary correspondence, the edge states retain
a general topological characterization. In fact, the “break-
down” stems from the general non-Bloch-wave behavior of
eigenstates (non-Hermitian skin effect), which affects the
phase diagrams in a dramatic yet predictable manner. We
therefore introduce “non-Bloch Chern numbers” to which
the numbers of chiral edge modes are strictly tied. Notably,
complex-valued wave vector (momentum) is used in their
construction, which captures a unique feature of non-
Hermitian bands. As an illustration, we study a concrete
lattice model, whose energy spectra, dynamics (edge
wave propagations), and phase diagram are found to be
in accordance with our theory.
Bloch Hamiltonian.—We consider a lattice model similar

to that of Ref. [44]. The Bloch Hamiltonian is
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HðkÞ ¼ ðvx sin kx þ iγxÞσx þ ðvy sin ky þ iγyÞσy
þ ðm − tx cos kx − ty cos ky þ iγzÞσz; ð1Þ

where σx;y;z are Pauli matrices. The Hermitian part is
the Qi-Wu-Zhang model [92] (a variation of Haldane
model [88]); the non-Hermitian parameters γx;y;z appear as
“imaginary Zeeman fields” [93]. When γx;y;z ¼ 0, the
model has a topological transition at m ¼ tx þ ty, where
the Chern number jumps. We shall focus on m being close
to tx þ ty (γx;y;z are taken to be small compared to tx;y). The
eigenvalues of HðkÞ are

E�ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j¼x;y;z

ðh2j − γ2j þ 2iγjhjÞ
s

; ð2Þ

where ðhx; hy; hzÞ ¼ ðvx sin kx; vy sin ky; m −
P

jtj cos kjÞ.
A band is called “gapped” or “separable” [44] if its

energies in the complex plane are separated from those of
other bands. In this model, the Bloch bands are gapped if
E�ðkÞ ≠ 0. The gapped regions are found to be m > mþ
and m < m−, where m� have simple expressions when
γz ¼ 0

m� ¼ tx þ ty �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2x þ γ2y

q
: ð3Þ

The Bloch phase boundaries are m ¼ m�, where the gap
closes at k ¼ ð0; 0Þ. One can obtain that the HðkÞ-based
Chern number (Bloch Chern number) [44,45] is 0 for
m > mþ, 1 for m < m−, and becomes nondefinable in the
gapless region m ∈ ½m−; mþ�.
Open boundary.—According to the usual bulk-boun-

dary-correspondence scenario, the chiral edge states of an
open-boundary system should be determined by the Bloch
Chern numbers. However, a different physical picture is
found here. Let us present numerical results before the
theory. To be concrete, let us take γz ¼ 0 and focus on the
x-y-symmetric cases, namely vx ¼ vy ¼ v, tx ¼ ty ¼ t,
γx ¼ γy ¼ γ. We fix v ¼ t ¼ 1 and solve the real-space
lattice Hamiltonian on a square geometry with edge length
L in both x and y directions, taking ðm; γÞ as the varied
parameters. Among other results we find:
(i) The open-boundary spectra are prominently different

from those of Bloch Hamiltonian. Although the Bloch
spectra are complex valued [see Eq. (2)], the majority of
square-geometry energy eigenvalues are real valued when
γz ¼ 0. It should be mentioned that the reality of open-
boundary spectra is not a general rule; in other models, they
are often complex (e.g., when γz is nonzero); nevertheless,
in general the open-boundary and Bloch spectra have
pronounced differences.
The reality of square-geometry spectra can be explained

as follows. To avoid lengthy notations, we simply take
L ¼ 2 as an illustration. Let us order the four sites as

ðx; yÞ ¼ ð1; 1Þ; ð2; 1Þ; ð1; 2Þ; ð2; 2Þ, then the real-space
Hamiltonian reads

H ¼

0
BBBBB@

M Tx Ty 0

T†
x M 0 Ty

T†
y 0 M Tx

0 T†
y T†

x M

1
CCCCCA
; ð4Þ

where

M ¼ mσz þ iγxσx þ iγyσy;

Tx ¼ −
tx
2
σz − i

vx
2
σx; Ty ¼ −

ty
2
σz − i

vy
2
σy: ð5Þ

This Hamiltonian is “η-pseudo-Hermitian” [94,95] (not
PT-symmetric [38,58]), namely, it satisfies η−1H†η ¼ H,
where η is the direct product of spatial inversion and σz:

η ¼

0
BBB@

0 0 0 σz

0 0 σz 0

0 σz 0 0

σz 0 0 0

1
CCCA: ð6Þ

The pseudo-Hermiticity guarantees that from Hjψni ¼
Enjψni, one can infer Enhψnjηjψni¼E�

nhψnjηjψni, which
means En ¼ E�

n when hψnjηjψni ≠ 0. In this model, we
find that the majority of eigenstates have hψnjηjψni ≠ 0 in
the relevant region of parameter space.
The dissimilarity between open-boundary and Bloch

spectra has also been found in a 1D model [46,53,54,56],
whose spectra can be readily obtained via a similarity
transformation to a Hermitian Hamiltonian [56]. Free of
this specificity, our 2D model is a more nontrivial and
representative exemplification of the phenomenon that the
open-boundary spectra are noticeably different from the
Bloch spectra.
(ii) The topological transition between nontrivial and

trivial phases (i.e., with and without robust chiral edge
modes) does not occur at the Bloch phase boundary m ¼
m� [Eq. (3)]. By numerically scanning the gap-closing
points [96], we find that the phase boundary is a single
curve (red solid one in Fig. 1), in sharp contrast to the
two straight lines m ¼ m� obtained from the Bloch
Hamiltonian. Furthermore, the numerical phase boundary
can be well approximated by the theoretical prediction
of Eq. (14).
As an illustration of the phase diagram, we show in

Fig. 2 the numerical spectra for two values of parameters
indicated as filled square and asterisk in Fig. 1. Both filled
square and asterisk are taken at the Bloch phase boundary
where the Bloch Hamiltonian is gapless. Remarkably, the
spectra at filled square clearly display an energy gap ≈ 0.4
[Fig. 2(a), left panel]. A similar bulk gap is found for the
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asterisk point; in addition, there are a few in-gap energies,
which can be identified as those of chiral edge modes. The
absence or existence of chiral edge modes can also be
detected by wave-packet motions (Fig. 2, right panels). In
Fig. 2(a), there are no chiral edge modes, and the initial

wave functions are superpositions of bulk eigenstates;
therefore, the wave packet quickly enters the bulk; in
Fig. 2(b), one can see clear signatures of chiral motions
along the edge.
Finally, we emphasize that the phase diagram is inde-

pendent of the geometry of system, which indicates its
topological nature. For example, the disk geometry
(x2 þ y2 ≤ R2) produces the same phase diagram as
Fig. 1 (see the Supplemental Material [97]).
Non-Bloch Chern number.—This intriguing phase dia-

gram is a prediction of the non-Bloch theory based on
complex-valued wave vectors. We now introduce this
formulation. First, we find that all the bulk eigenstates are
exponentially localized at the boundary of system [98,99].
This “non-Hermitian skin effect” [56] is possible because the
eigenstates are nonorthogonal. To see this effect explicitly,
we consider the low-energy continuum model of Eq. (1)
(with γz ¼ 0), which is its expansion to the k2j order:

HðkÞ ¼ ðvxkx þ iγxÞσx þ ðvyky þ iγyÞσy
þ
�
m − tx − ty þ

tx
2
k2x þ

ty
2
k2y

�
σz: ð7Þ

It can be decomposed as HðkÞ ¼ H0 þH1, where H1 ¼
iγxσx þ iγyσy, and H0 is the rest part. For small k, we have
∂H0=∂kj ¼ vjσj and H1 ¼ i

P
j¼x;yðγj=vjÞð∂H0=∂kjÞ ¼P

jðγj=vjÞ½xj; H0�, where ðxx; xyÞ≡ ðx; yÞ. Note that
xj ¼ ið∂=∂kjÞ in the k-space representation. Let us treat
H1 as a perturbation. The lowest-order perturbation to an

FIG. 2. Left panel: Lowest energy eigenvalues of a square geometry with L ¼ 30. Right three panels: wave-packet evolutions.
(a) m ¼ 2.2121; (b) m ¼ 1.7879 (indicated by filled square and asterisk in Fig. 1), with γ ¼ 0.15 for both. The energy eigenvalues
shown here are real valued. In (a), a nonzero energy gap is apparent and in (b), there are a few in-gap energies of chiral edge states. For
the wave-packet evolution, the initial state takes the Gaussian form ψðt ¼ 0Þ ¼ N exp½−ðx − 15Þ2=40 − ðy − 1Þ2=10�ð1; 1ÞT , N being
the normalization factor, and evolves according to the Schrodinger equation i∂tjψðtÞi ¼ HjψðtÞi. The intensity profile of jψðtÞi
(modulus squared), normalized so that the total intensity is 1, is shown for t ¼ 0, 5, 20. The wave packet quickly fades into the bulk in
(a), whereas the chiral (unidirectional) edge motion is appreciable in (b).

FIG. 1. Topological phase diagram based on open-boundary
spectra (forvx;y ¼ tx;y ¼ 1, γx;y ¼ γ, γz ¼ 0).Chiral edge states are
found in the shadow area, which is therefore topologically non-
trivial. The trivial-nontrivial phase boundary (red solid curve) is
well approximatedby the theoretical curve inEq. (14) (shownas the
blue dashed curve,which is very close to the red solid curve).Away
from this phase boundary, the (open-boundary) bulk spectra are
gapped.TheBloch-Hamiltonianphaseboundaries are shownas the
dotted lines, whose equations are m ¼ m� with m� ¼ 2� ffiffiffi

2
p

γ.
The Bloch spectra are gapless in the fan m ∈ ½m−; mþ�. The
non-Bloch Chern number C is defined in Eq. (13) (we take the
ReðEαÞ < 0 band and omit the α index; see text).
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eigenstate jni of H0 is
P

l≠njlihljH1jni=ðEn−ElÞ¼P
l≠n

P
jðγj=vjÞjlihljxjjni¼

P
jðγj=vjÞðxj− x̄jÞjni, where

x̄j ≡ hnjxjjni. Therefore, the associated eigenstate of
H is jψni¼½1þP

jðγj=vjÞðxj−x̄jÞ�jni≈exp½
P

jðγj=vjÞ×
ðxj−x̄jÞ�jni. Thus, for an extended state jni, jψni is exponen-
tially localized like exp½ðγx=vxÞxþ ðγy=vyÞy� [100]. The
role of non-Hermiticity is notable in this derivation: without
the “i” factor in H1, we would have obtained a phase factor
instead of exponential decay.
In view of this non-Hermitian skin effect, we take a

complex-valued wave vector (or momentum) to describe
open-boundary eigenstates:

k → k̃þ ik̃0; ð8Þ
where the imaginary part k̃0 takes the simple form k̃0j ¼
−γj=vj for small k̃ in this model. Accordingly, we define a
“non-Bloch Hamiltonian” as follows:

H̃ðk̃Þ≡Hðk → k̃þ ik̃0Þ: ð9Þ
In our model, the replacement kj → k̃j − iγj=vj leads to

H̃ðk̃Þ¼vxk̃xσxþvyk̃yσyþ
�
m̃þtxk̃

2
xþtyk̃

2
y

2
−i

X
j

tjγjk̃j
vj

�
σz;

ð10Þ
where

m̃ ¼ m − tx − ty −
txγ2x
2v2x

−
tyγ2y
2v2y

: ð11Þ

The above approach toward H̃ðk̃Þ is quite general and can
in principle be implemented directly on lattice models
without taking continuum limit. Equations (8) and (9)
remain applicable, though k̃0 in general should be treated as
a function of k̃, which parametrizes a generalized Brillouin
zone T̃2ðk̃Þ. It is a deformation of the standard Brillouin
zone T2ðkÞ into complex spaces.
Our non-Bloch Chern number is defined as the standard

Chern number of H̃ðk̃Þ (not of HðkÞ [44,45]). Because
H̃ðk̃Þ is generally non-Hermitian, we define the standard
right or left eigenvectors by

H̃ðk̃ÞjuRαi ¼ EαjuRαi; H̃†ðk̃ÞjuLαi ¼ E�
αjuLαi; ð12Þ

where α is the band index. The normalization huLαjuRαi¼1
is required in defining Chern numbers. If we diagonalize
H̃ðk̃Þ ¼ VJV−1, J being diagonal, then every column of V
[or ðV†Þ−1] is a right (or left) eigenvector, with the
normalization huLαjuRβi ¼ δαβ satisfied. Now, we intro-
duce the non-Bloch Chern number in the generalized
Brillouin zone T̃2ðk̃Þ

CðαÞ ¼
1

2πi

Z
T̃2

d2k̃ϵijh∂iuLαðk̃Þj∂juRαðk̃Þi; ð13Þ

where ϵxy ¼ −ϵyx ¼ 1. Equation (13) determines the chiral
edge modes of open-boundary systems (squares, disks,
triangles, etc.). It can also be expressed as CðαÞ ¼
ð1=2πiÞ RT̃2 d2k̃ϵijTrðPα∂iPα∂jPαÞ, where the projection
operator Pαðk̃Þ ¼ juRαðk̃ÞihuLαðk̃Þj.
For the present two-band model, we shall focus on the

Chern number of the “valence band” [ReðEαÞ < 0�, omitting
the α index in Eq. (13). We compute the Chern number from
Eq. (10), and obtain that C ¼ 1 (0) for m̃ < 0 (>0). When
tx;y ¼ vx;y ¼ 1; γx;y ¼ γ, the topologically-nontrivial condi-
tion m̃ < 0 becomesm < 2þ γ2, and the phase boundary is

m ¼ 2þ γ2; ð14Þ

which is confirmed by our numerical calculations (see
Fig. 1). We note that in the low-energy theory, γ is treated
as being small, and we can see from Fig. 1 that γ ∼ 0.5
remains well described. As a comparison, the Bloch Chern
number [44,45] is nonzero only when m < 2 −

ffiffiffi
2

p
γ;

moreover, the Bloch Chern number cannot be defined for
m ∈ ½2 − ffiffiffi

2
p

γ; 2þ ffiffiffi
2

p
γ� because the bands are gapless

(inseparable).
To summarize our approach: we calculate the imaginary

part k̃0 of wave vector, which is then used to generate H̃ðk̃Þ.
The non-Bloch Chern number is then defined via H̃ðk̃Þ in a
standard manner. The calculation is simplified in the
continuum-model approach, which does not require any
numerical input. For certain models, we have calculated the
non-Bloch Chern number directly from the lattice models
[101]. It will be useful to develop efficient algorithms to
calculate k̃0 and C beyond the continuum approach, which
is left to future studies.
Cylinder.—Nowwe briefly discuss the cylinder topology

whose spectra are noticeably different from the square or
disk topology. Suppose that the cylinder has periodic-
boundary condition in the x direction and open boundaries
in the y direction. The Hamiltonian can be diagonalized as a
family of 1D Hamiltonians parametrized by the good
quantum number kx. As an illustration, we take a set of
parameters indicated as asterisk in Fig. 3(a) and show the
numerical spectra in Fig. 3(b). Topological edge states can
be readily seen in the spectra.
In fact, to characterize the chiral edge states on the

cylinder, one can define a non-Bloch “cylinder Chern
number,” which is denoted as Cy for the open boundaries
in y direction. The definition is quite similar to Eq. (13),
except that ðk̃x; k̃yÞ is replaced by ðkx; k̃yÞ, because the
eigenstates are forced to be Bloch waves in the x direction.
A non-Bloch “cylinder Hamiltonian” H̃yðkx; k̃yÞ can be
obtained from HðkÞ via ky → k̃y þ ik̃0y [similar to Eq. (9)],
then Cy can be defined by H̃y, which we shall not repeat
due to the resemblance to the construction of C [Eq. (13)].
We would like to emphasize the following: (i) The value

of non-Bloch cylinder Chern number depends on the edge
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orientation. For example, if we take open boundaries in the
x direction, the Chern numberCx defined by H̃xðk̃x; kyÞ can
be different from Cy. (ii) The original non-Bloch Chern
number defined in Eq. (13) is the physically more useful
one. In fact, we find that wave-packet motions on the edges
of cylinder follow the phase diagram of Fig. 1, namely,
chiral edge motions are appreciable when C (instead of Cy)
is nonzero. This is understandable because wave packets
are quite ignorant of the periodic-boundary condition in the
x direction if the cylinder circumference is much larger than
the wave-packet size.
Conclusions.—We uncovered a non-Bloch bulk-

boundary correspondence: the chiral edge states are
determined by non-Bloch Chern numbers defined in the
complex Brillouin zone. The obtained phase diagrams (also
confirmed numerically) are qualitatively different from the
Bloch-Hamiltonian counterparts. Our results suggest a non-
Bloch framework for non-Hermitian band topology.
There are many open questions ahead. For example, it is

worthwhile to study the respective roles of the Bloch and
non-Bloch Chern numbers: what aspects of non-Hermitian
physics are described by the Bloch or non-Bloch one? In
addition, the theory can be generalized to many other
topological non-Hermitian systems. It is also interesting to
go beyond the band theory (e.g., to consider interaction
effects).
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