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Incorporation of kinetic effects such as Landau damping into a fluid framework was pioneered by
Hammett and Perkins, by obtaining closures of the fluid hierarchy, where the gyrotropic heat flux
fluctuations or the deviation of the fourth-order gyrotropic fluid moment are expressed through lower-order
fluid moments. To obtain a closure of a fluid model expanded around a bi-Maxwellian distribution
function, the usual plasma dispersion function ZðζÞ that appears in kinetic theory or the associated plasma
response function RðζÞ ¼ 1þ ζZðζÞ has to be approximated with a suitable Padé approximant in such a
way that the closure is valid for all ζ values. Such closures are rare, and the original closures of Hammett
and Perkins are often employed. Here we present a complete mapping of all plausible Landau fluid closures
that can be constructed at the level of fourth-order moments in the gyrotropic limit and we identify the most
precise closures. Furthermore, by considering 1D closures at higher-order moments, we show that it is
possible to reproduce linear Landau damping in the fluid framework to any desired precision, thus showing
convergence of the fluid and collisionless kinetic descriptions.
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Fluid models are an extremely important tool in many
areas of space physics and astrophysics. Despite the
underlying dynamics of these systems being often almost
completely collisionless, theoretical models and numerical
simulations with simplified fluid models that implicitly
assume a high-collisionality regime, such as magnetohy-
drodynamics (MHD) [1–5], provided deep insight into
many phenomena, such as the solar wind, the global
structure of the heliosphere, turbulence theories, magnetic
reconnection, and many others. The implicit assumption of
high collisionality in MHD comes from prescribing the
pressure to be a scalar quantity, i.e., by prescribing that the
underlying distribution function is strictly isotropic and that
it remains strictly isotropic during its time evolution. In
collisionless systems, the distribution function is free to
evolve from its initial state and become anisotropic, before
microinstabilities start to restrict its further anisotropic
evolution. In other words, the implicit assumption of high
collisionality in MHD comes from prescribing the pressure
fluctuations to be isotropic. The absence of anisotropic
pressure fluctuations in compressible MHD is the main
reason why MHD deviates (even at the linear level for an
isotropic Maxwellian) from the simplest collisionless fluid
description, known as CGL (after Chew, Goldberger, and
Low [6–10]) and is also sometimes referred to as collision-
less MHD. Nevertheless, even in the low-frequency long-
wavelength limit, the CGL fluid model still deviates from a
collisionless kinetic description, primarily because of the
absence of the kinetic effect of Landau damping [11]. For

example, consider a proton-electron plasma with external
magnetic field B0, where both species are described by an
equilibrium bi-Maxwellian distribution function, and con-
sider the usual ion-acoustic (sound) mode that propagates
in the direction parallel to B0. At wavelengths that are much
longer than the Debye length, the exact kinetic dispersion
relation reads

Tð0Þ
ke

Tð0Þ
kp

RðζpÞ þ RðζeÞ ¼ 0; ð1Þ

where the plasma response function RðζÞ ¼ 1þ ζZðζÞ and
the plasma dispersion function ZðζÞ ¼ ð1= ffiffiffi

π
p ÞV:P:R∞

−∞ e−x
2

=ðx − ζÞdxþ i
ffiffiffi
π

p
e−ζ

2 ∀ ImðζÞ, and the integra-
tion passes “through” the pole. With species index r, the
variable ζr is here defined as ζr ¼ ω=ðjkkjvthkrÞ, ω being
frequency and kk the parallel wave number, the parallel

thermal speed vthkr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tð0Þ

kr =mr

q
, and Tð0Þ

kr ¼ pð0Þ
kr =n

ð0Þ
r is

the parallel equilibrium temperature. The dispersion
relation Eq. (1) can in general be solved only numerically,

and, e.g., for τ≡ Tð0Þ
ke =T

ð0Þ
kp ¼ 1, the solution is ζp ¼

�1.457 − 0.627i. The negative imaginary part represents
strong Landau damping, and since no dispersive effects are
present, the Landau damping of the parallel ion-acoustic
mode does not disappear even on large astrophysical scales,
i.e., in the low-frequency long-wavelength limit where the
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phase speed ω=kk is constant. In contrast, the solution for
an ion-acoustic mode with both species described by the

CGL pressure equations reads ζp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ð1þ τÞ=ð1þ μÞ

q
,

where μ≡me=mp ¼ 1=1836, so for τ ¼ 1 the solution
is ζp ¼ �1.732. Alternatively, if the electrons are pre-
scribed to be isothermal, the dispersion relation reads

ζp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð3þ τÞ=ð1þ μÞ

q
, which for τ ¼ 1 yields

ζp ¼ �1.414. Therefore, without Landau damping the
usual fluid models do not represent the correct long-
wavelength limit of collisionless kinetic theory.
The incorporation of Landau damping into the CGL fluid

model was pioneered by Hammett and Perkins [12] and
was further refined (see, e.g., Refs. [13–17] and references
therein). These fluid models that describe Landau damping
in the fluid framework are usually referred to as gyrofluids
(formulated in the guiding-center reference frame) or
Landau fluids (formulated in the usual laboratory reference
frame), even though there are other subtle differences and
the vocabulary is not strictly enforced. These fluid models
are constructed by calculating the hierarchy of fluid
moments of the Vlasov equation to higher orders than
the usual pressure tensor, and by finding a closure, where
the last retained fluid moment is expressed through lower-
order moments. To find a closure, the exact kinetic RðζÞ
function is replaced by a suitable Padé approximant (as a
ratio of two polynomials) in such a way that the closure is
valid for all ζ values. A (generalized) n-pole Padé approx-
imant RnðζÞ to a function RðζÞ is found by matching the
power series expansion jζj ≪ 1 and the asymptotic series
expansion jζj ≫ 1 of both functions. There are of course
many possible choices, and here we are interested only in
approximants that at least reproduce the first term of the
asymptotic expansion RðζÞ ¼ −1=ð2ζ2Þ þ � � �, i.e., as hav-
ing a precision oðζ−2Þ. Here we define “the basic” n-pole
Padé approximant of RðζÞ as

Rn;0ðζÞ ¼
1þ a1ζ þ a2ζ2 þ � � � þ an−2ζn−2

1þ b1ζ þ b2ζ2 þ � � � þ bn−1ζn−1 − 2an−2ζn
;

where the second index in Rn;n0 ðζÞ signifies, that n0 addi-
tional asymptotic points were used in comparison with the
basic Rn;0ðζÞ definition. The n0 ¼ 0 index helps to quickly
orient a large hierarchy of many possible RðζÞ approx-
imants. This asymptotic profile correctly captures the
asymptotic decay of the density moment, and any profile
with fewer asymptotic points should be avoided if possible.
The 1-pole approximant is R1ðζÞ ¼ 1=ð1 − i

ffiffiffi
π

p
ζÞ. Rn;0ðζÞ

has power series precision oðζ2n−3Þ and asymptotic series
precision oðζ−2Þ, so Rn;n0 ðζÞ has precision oðζ2n−3−n0 Þ and
oðζ−2−n0 Þ. The Padé approximant to ZðζÞ is defined as
Rn;n0 ðζÞ ¼ 1þ ζZn;n0 ðζÞ. Comparison with the 2-index
notation of Martín et al. [18] (introducing superscript M)
and of Hedrick and Leboeuf [19] (superscript HL) can be

done easily according to ZM
n;n0 ¼ Zðnþn0Þ=2;n0−3 and ZHL

n;n0 ¼
Zn;n0þn−3. Padé approximants were also used in developing
analytic models for the Rayleigh-Taylor and Richtmyer-
Meshkov instability [20,21].
Similarly to Ref. [12], we concentrate here on a 1D

geometry that can be viewed as an electrostatic case, or
from our view preferably as propagation along B0, which
naturally picks up the ion-acoustic mode (since the 1D
velocity fluctuations are along B0). For brevity we drop
writing the parallel subscripts (except on kk) and species
index r, since closures are constructed independently for
each species. Examples of RðζÞ Padé approximants are
R2;0ðζÞ ¼ 1=ð1 − i

ffiffiffi
π

p
ζ − 2ζ2Þ,

R3;0ðζÞ ¼
1 − i

ffiffiffi
π

p π−3
4−π ζ

1 − i
ffiffi
π

p
4−π ζ −

3π−8
4−π ζ2 þ 2i

ffiffiffi
π

p π−3
4−π ζ

3
;

R3;1ðζÞ ¼
1 − i 4−πffiffi

π
p ζ

1 − 4iffiffi
π

p ζ − 2ζ2 þ 2i 4−πffiffi
π

p ζ3
.

We note that Table 1 of Ref. [19] can be recovered
analytically, and we report a typographical error in their
a1 coefficient for Z3;1ðζÞ that should be a1¼2=ð4−πÞ¼
2.32990 instead of 2.23990, used, e.g., in Ref. [15].
The two Padé approximants used by Ref. [12] read
R3;2ðζÞ¼ð1−i ffiffiffi

π
p

ζ=2Þ=ð1−3i ffiffiffi
π

p
ζ=2−2ζ2þi

ffiffiffi
π

p
ζ3Þ,

R4;3ðζÞ ¼
1 − i

ffiffi
π

p
2
ζ − ð3π−8Þ

4
ζ2

1 − i 3
ffiffi
π

p
2
ζ − ð9π−16Þ

4
ζ2 þ i

ffiffiffi
π

p
ζ3 þ ð3π−8Þ

2
ζ4

;

where the first choice yields a closure for the heat flux
qð1Þ ¼ −ið2= ffiffiffi

π
p Þn0vthsgnðkkÞTð1Þ. Note that our definition

of the thermal speed contains a factor of 2. The second
choice yields a closure for r̃ defined as r ¼ 3p2=ρþ r̃,
where the fourth-order moment r ¼ m

R ðv − uÞ4fd3v (we
follow the notation of Ref. [15]; r̃ can be also denoted as δr)
and the R4;3ðζÞ closure obtained by Ref. [12] reads

r̃ð1Þ ¼ −
i2

ffiffiffi
π

p
ð3π − 8Þ vthsgnðkkÞq

ð1Þ þ ð32 − 9πÞ
2ð3π − 8Þ v

2
thn0T

ð1Þ:

Curiously, it can be shown that the fluid dispersion relation
that uses the above closure is equivalent to the kinetic
dispersion relation Eq. (1) once the exact RðζÞ is replaced
by the approximant R4;3ðζÞ (strictly speaking, it is equiv-
alent to the numerator of Eq. (1) once both terms in Eq. (1)
are written with a common denominator). Electron inertia
must be considered and the displacement current must
of course be neglected in the fluid model to yield Eq. (1).
This observation is also true for all other Rn;n0 ðζÞ closures
presented here and closures that satisfy Eq. (1) can be
viewed as “reliable” or physically meaningful.
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In Fig. 1, the dispersion relation of the fluid model that
uses the above R4;3ðζÞ closure (gray dot-dashed line) is
compared to the exact kinetic solution Eq. (1) (black solid
line). The figure is motivated by Fig. 9.18 in Ref. [22]
(p. 355). A closure is called “static” when the last retained
moment (i.e., r̃) is directly expressed through lower-order
moments. A closure is called “time dependent” or
“dynamic” when the closure involves ∂=∂t of the last
retained moment (i.e., ζr̃), and the ∂=∂t is then replaced by
a d=dt to recover the Galilean invariance. Time-dependent
closures can be constructed usually with a higher-order
Padé approximant than static closures; however, the
replacement of ∂=∂t with d=dt introduces only one non-
linearity among other neglected nonlinearities.
Here we report on the most precise Landau fluid closures

that can be constructed at a given level. For example, by
using R3;1ðζÞ, the following static closure can be con-
structed for the heat flux:

qð1Þ ¼ 3π − 8

4 − π
n0Tð0Þuð1Þ − i

ffiffiffi
π

p
4 − π

n0vthsgnðkkÞTð1Þ: ð2Þ

Considering the power series precision (PSP), this is the
most precise static closure that can be constructed for the
heat flux, and the precision is oðζ2Þ. The coefficients of
the R4;2ðζÞ approximant are b3 ¼ −2a1, b2 ¼ 3a2 − 2,
a1¼−i

ffiffiffi
π

p ð10−3πÞ=ð3π−8Þ, a2¼−ð16−5πÞ=ð3π−8Þ,
b1¼−2i

ffiffiffi
π

p
=ð3π−8Þ, and the static closure with the

highest PSP, oðζ3Þ, that can be constructed at the fourth-
moment level reads

r̃ð1Þ ¼ −i
ffiffiffi
π

p ð10 − 3πÞ
ð16 − 5πÞ vthsgnðkkÞq

ð1Þ

þ ð21π − 64Þ
2ð16 − 5πÞ v

2
thn0T

ð1Þ

þ i
ffiffiffi
π

p ð9π − 28Þ
ð16 − 5πÞ vthT

ð0Þn0sgnðkkÞuð1Þ: ð3Þ

The R4;2ðζÞ is also used to obtain the dynamic closure for
the heat flux with the highest PSP, and written for a change
in real space, the closure reads

�
d
dt

−
ffiffiffi
π

p 10− 3π

16− 5π
vth∂zH

�
qð1Þ

¼ −n0v2th
3π− 8

16− 5π
∂zTð1Þ − n0Tð0Þvth

ffiffiffi
π

p 9π − 28

16− 5π
∂zHuð1Þ:

ð4Þ

The H operator is the negative Hilbert transform operator
that acts on a function fðzÞ according to HfðzÞ≡
−ð1=πzÞ � fðzÞ≡ −ð1=πÞV:P: R∞

−∞ fðz0Þ=ðz − z0Þdz0, the
� operator being the convolution. We use the Fourier
decomposition e−iωtþikkz, and the transformation of a
closure between Fourier and real space can be done simply

FIG. 1. Landau damping of the ion-acoustic mode, calculated with exact RðζÞ, black solid line; R4;2ðζÞ, green dotted line; R5;3ðζÞ, blue
dotted line; R6;4ðζÞ, orange dotted line; and R7;5ðζÞ, red dashed line. The x axis is the ratio of electron and proton temperature and the
y axis the ratio of the damping and real frequency. The solutions represent the most precise dynamic closures that can be constructed for
the third-, fourth-, fifth-, and sixth-order fluid moments. The R4;3ðζÞ closure of Ref. [12] is plotted as a gray dot-dashed line. The figure
shows that it is possible to reproduce Landau damping in the fluid framework to any desired precision.
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according to −iω ↔ ∂=∂t, ikk ↔ ∂z, isgnðkkÞ ↔ H, and
jkkj ↔ −∂zH. The closure is plotted in Fig. 1 as a dark
green dotted line, and the closure is very accurate in the
region τ ¼ ½1; 5�.
A closure that has the highest PSP at the fourth-moment

level, oðζ4Þ, is a dynamic closure constructed with approx-
imant R5;3ðζÞ, that has coefficients b5 ¼ −2a3, b4 ¼ −2a2,
b3¼3a3−2a1, b2¼3a2−2, a1 ¼ ið27π2 − 126π þ 128Þ=
ð3 ffiffiffi

π
p ð9π − 28ÞÞ, a2 ¼ ð33π − 104Þ=ð3ð9π − 28ÞÞ, a3¼

2ið9π2−69πþ128Þ=ð3 ffiffiffi
π

p ð9π−28ÞÞ, b1¼−2ið21π−64Þ=
ð3 ffiffiffi

π
p ð9π−28ÞÞ, and the closure reads

�
d
dt

−
ð104 − 33πÞ ffiffiffi

π
p

2ð9π2 − 69π þ 128Þ vth∂zH
�
r̃ð1Þ

¼ v2thn0T
ð0Þ ð135π2 − 750π þ 1024Þ

2ð9π2 − 69π þ 128Þ ∂zuð1Þ

þ n0v3th
3ð160 − 51πÞ ffiffiffi

π
p

4ð9π2 − 69π þ 128Þ ∂zHTð1Þ

þ v2th
ð54π2 − 333π þ 512Þ
2ð9π2 − 69π þ 128Þ ∂zqð1Þ: ð5Þ

The dispersion relation of a fluid model that uses the
R5;3ðζÞ closure is plotted in Fig. 1 as a blue dotted line.
In the region τ ¼ ½1; 5�, this is the most precise closure that
can be constructed at the fourth-moment level.
In contrast, a static closure that uses the most asymptotic

series jζj ≫ 1 points at the fourth-moment level, with
precision oðζ−6Þ, is constructed with R4;4ðζÞ, and the
closure reads r̃ð1Þ ¼ − 3

4

ffiffiffi
π

p
vthHqð1Þ. The most asymptoti-

cally precise closure is a dynamic closure constructed with
R5;6ðζÞ, that has a precision oðζ−8Þ, and the closure reads
fd=dt − (8=ð3 ffiffiffi

π
p Þ)vth∂zHgr̃ð1Þ ¼ −2v2th∂zqð1Þ. For tem-

peratures τ ¼ ½15; 100�, this is the most precise closure
that can be constructed at the fourth-moment level.
We mapped all the possible Landau fluid closures that can

be constructed (at the level of heat flux or the moment r̃)
and there are 7 possible static closures (5 reliable),
and 13 dynamic closures (9 reliable), some of them
related. We do not provide analytic solutions for all of these
closures. Nevertheless, other notable closures are forR5;4ðζÞ,
fd=dt− ½ð21π − 64Þ=ð ffiffiffi

π
p ð9π − 28ÞÞ�vth∂zHgr̃ð1Þ ¼ −n0v3th

½ð256− 81πÞ=(2 ffiffiffi
π

p ð9π − 28Þ) �∂zHTð1Þ − v2th ½ ð32− 9πÞ=
(2ð9π − 28Þ)�∂zqð1Þ, and for R5;5ðζÞ, fd=dt − ½6 ffiffiffi

π
p

=ð32−
9πÞ�vth∂zHgr̃ð1Þ ¼ −v2th½9π=(2ð32 − 9πÞ)�∂zqð1Þ.
All the above closures are also applicable to a 3D

geometry when written for r̃kk, qk, Tk, uk. Considering
the gyrotropic limit, the closure for r̃⊥⊥ defined as r⊥⊥ ¼
2p2⊥=ρþ r̃⊥⊥ is simply r̃⊥⊥ ¼ 0. The r̃k⊥ is defined
as rk⊥ ¼ pkp⊥=ρþ r̃k⊥, and introducing for brevity

T ⊥ ≡ Tð1Þ
⊥ =Tð0Þ

⊥ þ ðTð0Þ
⊥ =Tð0Þ

k − 1ÞðBz=B0Þ, there are 2

static closures, for R1ðζÞ, qð1Þ⊥ ¼ −ðpð0Þ
⊥ =

ffiffiffi
π

p ÞvthkHT ⊥,

and for R2;0ðζÞ, r̃ð1Þk⊥ ¼ −ð ffiffiffi
π

p
=2ÞvthkHqð1Þ⊥ , which up to

replacing Bz with jBj (that comes here from a complete
linearization) are equivalent to the closures of Ref. [14].
There are also 6 dynamic closures, some of them related.
With 3-pole approximants, a closure can be construc-

ted for R3;1ðζÞ, fd=dt − ½ ffiffiffi
π

p
=ð4 − πÞ�vthk∂zHgr̃ð1Þk⊥ ¼

−v2thk½π=(2ð4 − πÞ)�∂zq
ð1Þ
⊥ , and for R3;2ðζÞ, fd=dt−

ð2= ffiffiffi
π

p Þvthk∂zHgr̃ð1Þk⊥ ¼ −v2thk∂zq
ð1Þ
⊥ , that in the vanishing

Larmor radius limit are equivalent to closures of Ref. [15].
Here we report on a new closure that is constructed with
R3;0ðζÞ:
�
d
dt

−
ð3π − 8Þ

2
ffiffiffi
π

p ðπ − 3Þ vthk∂zH
�
r̃ð1Þk⊥

¼ −v2thk
4 − π

2ðπ − 3Þ ∂zq
ð1Þ
⊥ − pð0Þ

⊥ v3thk
ð16 − 5πÞ
4

ffiffiffi
π

p ðπ − 3Þ ∂zHT ⊥;

ð6Þ

that has a higher PSP, oðζ3Þ. No closures with 4-pole (or
higher) approximants are possible for r̃k⊥.
Returning to a 1D geometry and considering closures at

higher-order moments, Xn ¼ m
R ðv − uÞnfdv, the closure

for X5 with the highest PSP, oðζ5Þ, is constructed with
R6;4ðζÞ, and reads

�
d
dt

−
3ð180π2 − 1197π þ 1984Þ ffiffiffi

π
p

ð801π2 − 5124π þ 8192Þ vth∂zH
�
Xð1Þ
5

¼ −v2th
3ð675π2 − 4728π þ 8192Þ
2ð801π2 − 5124π þ 8192Þ ∂zr̃ð1Þ

þ v3th
3ð285π − 896Þ ffiffiffi

π
p

2ð801π2 − 5124π þ 8192Þ ∂zHqð1Þ

− v4thn0
3ð945π2 − 8184π þ 16384Þ
4ð801π2 − 5124π þ 8192Þ ∂zTð1Þ

þ v3thn0T0

9ð450π2 − 2799π þ 4352Þ ffiffiffi
π

p
ð801π2 − 5124π þ 8192Þ ∂zHuð1Þ:

ð7Þ

The closure is plotted in Fig. 1 as the orange dotted line.
Going higher in the fluid hierarchy, and decomposing
X6 ¼ 15p3=ρ2 þ X̃6, the closure with the highest PSP,
oðζ6Þ, is obtained with R7;5ðζÞ, being
�
d
dt

þ αx6vth∂zH
�
X̃ð1Þ
6

¼ þαx5v
2
th∂zX

ð1Þ
5 þ αrv3th∂zHr̃ð1Þ þ αqv4th∂zqð1Þ

þ αTv5thn0∂zHTð1Þ þ αuv4thn0T0∂zuð1Þ; ð8Þ

with coefficients

PHYSICAL REVIEW LETTERS 121, 135101 (2018)

135101-4



αx6 ¼ 18ð1545π2 − 9743πþ 15360Þ ffiffiffi
π

p
=D;

αx5 ¼ 3ð52425π2 − 331584πþ 524288Þ=ð2DÞ;
αr ¼ 3ð7875π2 − 50490πþ 80896Þ ffiffiffi

π
p

=D;

αq ¼ 3ð162000π3 − 1758 825π2 þ 6 263040π

− 7340032Þ=ð4DÞ;
αT ¼ −27ð15825π2 − 99260πþ 155648Þ ffiffiffi

π
p

=ð2DÞ;
αu ¼ 3ð189000π3 − 1612215π2 þ 4534656π

− 4194304Þ=ð2DÞ;
D¼ ð10800π3 − 120915π2 þ 440160π − 524288Þ: ð9Þ

The closure is plotted in Fig. 1 as the red line.
The remarkable result that the reliable closures repro-

duce the exact kinetic dispersion relation Eq. (1) once RðζÞ
is replaced by Rn;n0 ðζÞ leads us to conjecture that there exist
reliable fluid closures that can be constructed for even
higher moments, i.e., satisfying Eq. (1), once RðζÞ is
replaced by the Rn;n0 ðζÞ approximant. Furthermore, for a
given nth-order fluid moment, the reliable closure with the
highest power series precision is the dynamic closure
constructed with Rnþ1;n−1ðζÞ. Indeed, for higher-order fluid
moments one should be able to construct closures with
higher-order Rnþ1;n−1ðζÞ approximants that will converge
to RðζÞ with increasing precision. Thus, one can reproduce
linear Landau damping in the fluid framework to any
desired precision, which establishes the convergence of
fluid and collisionless kinetic descriptions.
The convergence was shown here in 1D geometry for the

example of a long-wavelength low-frequency ion-acoustic
mode. Nevertheless, the 1D closures have general validity,
i.e., from the largest astrophysical scales to the Debye
length, and are of course valid also for the Langmuir mode.
However, there are limitations in modeling the Langmuir
mode, since for kkλD < 0.2, Landau damping disappears
very quickly, and some closures show a small positive
growth rate instead.
The next logical step would be to establish an analytic

convergence of fluid and kinetic descriptions in a 3D
geometry in the gyrotropic limit. However, in 3D, for a
given nth-order tensor Xn, the number of its gyrotropic
moments is equal to 1þ int½n=2� and increases with n.
Therefore, it might be more difficult to show the con-
vergence in 3D, although the convergence should exist.
Concerning direct applicability of the derived closures,

numerical simulations of turbulence show a peculiar
behavior, in that at subproton scales, the parallel velocity
spectrum is always much steeper in kinetic simulations than
Landau fluid simulations (see, e.g., Fig. 7 of Ref. [23]). The
rkk closure of Ref. [12] does not include coupling with the
parallel velocity component, whereas our new closures do
and could explain the discrepancy.

Finally, to emphasize the importance of the closures
obtained, consider 1-fluid models in 1D geometry
with kkλD ≪ 1, closed by simple (non-Landau fluid)
Maxwellian closures Xn ¼ 0, for n odd, n ≥ 3, and
Xn ¼ ðn − 1Þ!!pn=2=ρn=2−1, for n even, n ≥ 4 (or that the
deviation X̃n ¼ 0 for n even). It can be shown by induction
that the dispersion relation reads

n ¼ odd∶ ζn−1 −
n!!

2ðn−1Þ=2
¼ 0;

n ¼ even∶ ζn −
ðn − 1Þ!!
2n=2

�
nζ2 −

n
2
þ 1

�
¼ 0: ð10Þ

For n ¼ 3, the solution is ζ ¼ � ffiffiffiffiffiffiffiffi
3=2

p
, and n ¼ 4 yields

ζ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2þ ffiffiffiffiffiffiffiffi

3=2
pq

, ζ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2 −

ffiffiffiffiffiffiffiffi
3=2

pq
. However,

n ¼ 5 yields ζ ¼ �ð15=4Þ1=4, ζ ¼ �ið15=4Þ1=4, and n ¼
6 yields ζ ¼ �0.58, ζ ¼ �1.75, ζ ¼ �1.87i. In fact, for
n > 4, the solution of Eq. (10) will always yield modes that
are unstable, and such fluid models cannot be used for
numerical simulations. The closure for n ¼ 4, r ¼ 3p2=ρ,
is sometimes called the “normal” closure [24]. Here we
conclude that the “normal” closure is actually the last non-
Landau fluid closure, and that beyond the fourth-order
moment, Landau fluid closures are required.
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