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The quasibiennial oscillation (QBO) is the nearly periodic reversal of the large scale flow generated by
internal waves in the equatorial stratosphere. Using a laboratory model experiment, we study the instability
that generates the QBO and investigate its nonlinear regime. We report the first quantitative measurements
of the nonlinearly saturated velocity of the flow. We show that the QBO is generated by a bifurcation that is
either supercritical or subcritical depending on the dominant dissipative process. This is confirmed by a
nonlinear analysis in the vicinity of the instability threshold.
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The quasibiennial oscillation (QBO) is the nearly peri-
odic reversal of the wind in the lower equatorial strato-
sphere. The period of the oscillation is 28 months on
average and is not locked to the yearly seasonal forcing.
This wind has a significant influence on hurricanes in North
America [1] and affects winter conditions in Europe [2].
This wind is known to be forced by atmospheric waves,

in particular, internal gravity waves that propagate in the
stratosphere [3–7]. These waves generate a forcing at zero
frequency and zero wave vector through the quadratic
nonlinearities of the Navier-Stokes equation and therefore
drive a flow at the largest scale of the system (for other
experimental setups showing this phenomenon, see [8,9]).
This is an example of a large scale coherent field driven by
small scale waves, other examples being acoustic streaming
[10], mean flows generated by pattern-forming instabilities
[11,12], and mean-field dynamo due to helical waves of
velocity [13], to quote a few. This large scale flow displays
reversals, as also observed for other types of large scale
fields driven on a turbulent background [14] such as the
magnetic field of Earth or the Sun.
The mechanism responsible for the reversals was first

identified by Lindzen and Holton [15] and a minimal model
was proposed by Plumb [16]. It considers two internal
waves propagating in opposite directions azimuthally and
in the same direction vertically. One of these waves forces a
mean flow eastward and the other one westward. The
competition between these two waves results in a mean
flow profile that changes sign at a given altitude. The
position where the mean flow changes sign drifts towards
the location from where the waves are emitted, which leads
to a periodic reversal of the mean flow. This mechanism
was confirmed experimentally [17,18] and numerically
[19]. The mean flow is oscillatory and its period is very
large compared to the period of the wave, so that the phase

of the mean flow oscillation is not locked to the one of the
waves. The generation of a mean flow and its periodic
reversals were observed experimentally but no quantitative
measurement of the amplitude of the mean flow could be
achieved and the type of the bifurcation remained
unknown. Yoden and Holton [20] have shown that the
reversals are generated by a supercritical Hopf bifurcation
by numerically integrating Plumb’s model when the dis-
sipation of the mean flow is only due to bulk viscous
effects. We are not aware of analytical predictions on the
super- or subcritical nature of the bifurcation.
Yet, knowing the nature of the bifurcation of the

instability that leads to the QBO is important to predict
the possible scenarios if the forcing is modified, e.g., due to
global warming. This is not only an academic exercise: an
anomaly of the QBO has been recently measured [21]. In
addition, determining the nature of the bifurcation is
important for general circulation models in order to obtain
the correct sensitivity to parameter changes.
In this Letter, we investigate the nature of the bifurcation

in a laboratory analog of the QBO and we understand our
results by analytically solving the model of Plumb and
McEwan [17].
A schematic view of the experimental setup is shown in

Fig. 1 and has been described in detail in [22]. It is made of
two transparent concentric vertical cylinders. The outer
diameter of the inner cylinder is 365 mm, the inner diameter
of the outer cylinder is 600 mm, and the height is
H ¼ 410 mm. The gap h between these two cylinders is
filled with a linearly density-stratified solution of NaCl or
MgCl2 in water. The density profile is obtained from
conductivity measurements. The stratification is measured
by the Brunt-Väisälä frequency, N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðg=ρ0Þdρ0=dz
p

,
where g is the acceleration of gravity, ρ0 is the background
density, and z is the vertical axis. The typical value of N is
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1.5–2.2 Hz, the highest values having been obtained
using MgCl2.
The fluid motion is forced using 16 silicone membranes,

which are in contact with the top of the fluid and can move
up and down in a nearly sinusoidal manner. Two neighbor-
ing membranes are driven by motors in opposition of phase
so that the forcing is a standing wave whose azimuthal
wavelength λx ¼ 200 mm is twice the curvilinear distance
between two motors. We note M the amplitude of the
motion of the membranes and we report here on measure-
ments performed with a forcing period Tf ¼ 15 s.
The fluid velocity is measured using particle image

velocimetry [23]. To wit, the fluid is seeded with particles,
whose density range is similar to the one of the fluid, so that
particles can be found in the whole liquid (see [22] and
Supplemental Material, Sec. I [24]). The wave (oscillation
at the forcing angular frequency ω) and the mean flow are
deduced from these measurements. The mean flow is
azimuthal and only depends on the height z, except close
to the boundaries.
To investigate the bifurcation, the amplitude of the

forcing is decreased step by step. We typically wait
8000 s for each value. The amplitude of oscillation of

the mean flow is obtained by a fit using a sine function
during the second half of each plateau of forcing.
We first describe the results obtained for high density

gradient. For N ¼ 2.16 Hz, a space-time diagram of the
mean flow is displayed in Fig. 2. Since the first value of the
forcing amplitude is high (M ¼ 14.5 mm), a mean flow is
generated. During its growth, the mean flow is oscillating
and then reaches an oscillating steady state with a period on
the order of 3000 s much larger than the period of the
wave (Tf ¼ 15 s).
We emphasize that we can keep the amplitude of

oscillation constant on more than 20 periods, whereas
previous experiments did not report more than two periods.
This results from a small pumping used to maintain the
stratification beneath the membranes (see Supplemental
Material, Sec. II [24]).
At fixed time, we observe that the flow changes direction

at a given height. The point of zero mean flow moves
upwards with time. This is in agreement with the behavior
of the atmospheric QBO [1], where this point moves
downwards: in the present experiment, the waves are
forced from the top, and in the atmosphere, the waves
are forced below the layer of interest so that, in both cases,
the point of zero mean flow drifts toward the source of
the waves.
When the amplitude of the forcing is decreased below a

given value (here Mc ¼ 11 mm), the mean flow vanishes.
This shows that there is a threshold in forcing amplitude
below which the zero mean flow is stable.
To better visualize the time variation of the mean flow,

we show it at a given height as a function of time in
Fig. 3(a). Recordings at other heights are similar. We
observe that the mean flow decreases smoothly when
decreasing the forcing amplitude. The square of the
amplitude A of the mean flow (averaged in height) as a
function of the forcing amplitude is shown in Fig. 4. The

FIG. 1. Schematic view of the experimental setup.

FIG. 2. Space-time diagram of the mean flow. The color code indicates the velocity in mm s−1. N ¼ 2.16 Hz (MgCl2) and Tf ¼ 15 s.
M changes every 8000 s: M ¼ 14.5, 14, 13.5, 13, 12.5, 12, 11.5, 10.5, 10 mm.
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experimental data are well fitted by a straight line that
crosses the x axis at a value in agreement with the threshold
value Mc, thus showing that A ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M −Mc

p
. The oscil-

lation period varies with M from T ≃ 2200 s for M ¼
14.5 mm to T ≃ 2900 s slightly above Mc. These two
features characterize a supercritical Hopf bifurcation, i.e.,
the transition to an oscillatory regime with finite frequency
at onset and continuously increasing amplitude of oscil-
lation from zero. This transition to the QBO is observed
when the Brunt-Väisälä frequency is large enough, here
N ¼ 2.16 Hz.
Results at a lower value of the Brunt-Väisälä frequency

are shown in Fig. 3(b) for N ¼ 1.54 Hz, where the forcing
is changed in the same manner as in Fig. 3(a). Compared to
the results at large N, we observe the following. (i) The
time series contains more harmonics (see insets of Fig. 3).
(ii) The decrease of the mean flow with the forcing
amplitude is much sharper. A plot similar to the one of
Fig. 4 (not shown) displays a discontinuous jump of the
amplitude to zero. (iii) In some experiments, the system
remains in the zero mean flow state for long duration (we
observed values up to 2 × 104 s ≃ 5.5 h forM ¼ 13.5 mm)
and then suddenly transitions to an oscillation of large
amplitude. All these observations show that at low value of
N the bifurcation is subcritical.
For the sake of completeness, we add that the period of

the oscillation is on the order of 4000 s and decreases with
M. Earlier works used NaCl and water as a fluid and it is
likely that the parameters used were in the regime of
subcritical bifurcation. Subcriticality, together with the
weakening of the stratification due to mixing, explain
the difficulty in achieving reproducible and quantitative
measurements of the mean flow.
We have shown experimentally that a change of N

changes the nature of the bifurcation. In the following,
we will show, using theoretical considerations, that this
change is due to a modification of the dominant dissipative
term for the mean flow. We use the model proposed by

Plumb and McEwan [17]. This model has been shown to
describe quantitatively the generation of a mean flow by a
single progressive internal wave in the setup used here (see
Semin et al. [22]).
The equation for the dimensionless azimuthal mean flow

ũðz; tÞ is

∂ũ
∂ t̃ ¼ −

X2
n¼1

∂F̃n

∂z̃ þ Λ1

∂2ũ
∂z̃2 − Λ2ũ: ð1Þ

F̃n are the fluxes of impulsion per unit mass due to the
waves

F̃nðz̃; t̃Þ ¼ exp

�
−
Z

z̃

0

1

ðũ − c̃nÞ4
dz̃0

�
; ð2Þ

where c̃1 ¼ −c̃2 ¼ 1 gives the sign of the horizontal phase
velocity of the wave. The amplitude of the flux at z̃ ¼ 0 is
one, which is a way to make the equation dimensionless.
The parameters of the model are related to the exper-

imental parameters according to

(a) (b)

FIG. 3. Mean flow as a function of time, for two different values of N, at height h ¼ 376 mm. M changes every 8000 s (shown by
vertical lines):M ¼ 14.5, 14, 13.5, 13, 12.5, 12, 11.5, 10.5, 10 mm. (Insets) details. (a) N ¼ 2.16 Hz (MgCl2). (b)N ¼ 1.55 Hz (NaCl).

FIG. 4. Square of the mean flow amplitude A2 as a function of
M (filled circle). A is deduced from sine fits of the data of Fig. 2.
Best fit (full line). N ¼ 2.16 Hz (MgCl2).
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c ¼ ω

kx
; d ¼

�
Nγ

kxc2
þ N3ν

kxc4

�−1
;

z̃ ¼ z
d
; ũ ¼ u

c
; ð3Þ

where ν ¼ 10−6 m2 s−1 is the kinematic viscosity of the
fluid and γ ¼ 10−3 s−1 is the damping rate due to friction at
the cylinder walls. The dimensionless control parameters
are

Λ1 ¼
νc
F0d

; Λ2 ¼
γcd
F0

; ð4Þ

where F0 is the dimensional wave flux. It is proportional to
M2 and depends on properties of the membranes [17]. The
1=Λi are Reynolds numbers associated with different
dissipative processes. We note that Λ1=Λ2 measures the
ratio between viscous dissipation in the bulk and friction at
the wall.
If we do not take into account the heightH and the gap h,

six parameters (N, ω, c, F0, ν, and γ) are involved in the
experiment and can be expressed with two units of length
and time, therefore leading to four dimensionless numbers.
Plumb’s model is based on the smallness of ω=N and
c=ðNdÞ and therefore involves two remaining dimension-
less parameters, Λ1 and Λ2. The height H can be discarded
because the damping length d of the waves is smaller than
H and h is partly taken into account by the value of the
friction γ. We note from the values reported in Table I that
both the experiment and the stratosphere involve fairly
small values of ω=N and c=ðNdÞ and that the Reynolds
number 1=Λ1 is in the same range provided that a turbulent
viscosity on the order of 0.1 m2 s−1 is chosen for the
stratosphere. This is not too surprising since the oscillation
of the mean flow is not chaotic and therefore not far from its
bifurcation threshold in both cases. Note, however, that the
dissipation length d involved in Λ1 results from different
dissipation mechanisms, because heat diffusivity and radi-
ative damping are involved in the case of the stratosphere.
However, in both cases, cd=F0 gives a good order of
magnitude for the period of the flow reversals [16].
We consider the model given by Eqs. (1) and (2) in a

semi-infinite domain (z̃ ∈ ½0;þ∞½). The boundary condi-
tions are vanishing ũ at infinity and at the forcing boundary
z̃ ¼ 0 (no slip). The linear stability analysis shows that the
mean flow is generated through a Hopf bifurcation with a
normal mode given by integrals of Bessel functions.
Weakly nonlinear analysis above threshold then gives

the sign of the coefficient of the cubic term in the amplitude
equation for the mean flow. This predicts the super- or
subcriticality of the bifurcation. In addition, the form of the
amplitude equation is not affected by a possible asymmetry
between the counterpropagating waves, because it is con-
strained by translational invariance in time. Details of these
calculations are presented in the Supplemental Material
[24] (Sec. III).
The parameter space is shown in Fig. 5. The solution

ũ ¼ 0 is linearly unstable at low values of Λ1 and Λ2 and
linearly stable for large values. The bifurcation is super-
critical for small values of Λ2, and subcritical for large
values. The result for small values of Λ2 is consistent with
the one of Yoden and Holton [20], who numerically
observed a supercritical bifurcation when Λ2 ¼ 0. These
two regimes are separated by a tricritical point located at
Λ1 ≃ 1.87 and Λ2 ≃ 0.12. In the experiment, a change
of M leaves Λ1=Λ2 constant. The experimentally observed
behaviors are in agreement with the results of the
calculation.
In conclusion, we have shown using quantitative experi-

ments and analytical calculations that the bifurcation in a
QBO model is either supercritical or subcritical, depending
on the dominant dissipative mechanism. A similar
approach can be used to check that the transition to the
atmospheric QBO described by global circulation models
also occurs through a Hopf bifurcation and to determine
whether its super- or subcriticality also depends on the
dominant dissipation mechanism. Finding the nature of
the bifurcation can explain most qualitative features of the
QBO. In particular, it shows why the phenomenon is not
strongly affected by the asymmetry between waves trav-
eling east- and westward. In the astrophysical context, this
approach could be applied to the QBO-like oscillations in
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TABLE I. Comparison between the dimensionless parameters
of the experiment and the ones of the Earth stratosphere.

N (Hz) d ω=N c=Nd 1=Λ1 cd=F0

Experiment 2 10 cm 0.2 0.07 3–20 2000 s
Stratosphere 2 × 10−2 10 km 10−4 0.15 30 1 year
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atmospheres of planets such as Saturn [25] or Jupiter [26]
or in the interior of stars [27,28].
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