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The two-dimensional oscillatory crack instability, experimentally observed in a class of brittle materials
under strongly dynamic conditions, has been recently reproduced by a nonlinear phase-field fracture
theory. Here, we highlight the universal character of this instability by showing that it is present in materials
exhibiting widely different near crack tip elastic nonlinearity, and by demonstrating that the oscillations
wavelength follows a universal master curve in terms of dissipation-related and nonlinear elastic intrinsic
length scales. Moreover, we show that upon increasing the driving force for fracture, a high-velocity tip-
splitting instability emerges, as experimentally demonstrated. The analysis culminates in a comprehensive
stability phase diagram of two-dimensional brittle fracture, whose salient properties and topology are
independent of the form of near tip nonlinearity.
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Cracks mediate materials failure and hence understand-
ing their spatiotemporal dynamics is of prime fundamental
and practical importance [1–5]. It is experimentally well
established that cracks in brittle materials undergo various
symmetry-breaking instabilities [5–13]. Most notably,
straight cracks in three-dimensional (3D) samples of
isotropic materials universally undergo a microbranching
instability, where short-lived microcracks branch out side-
ways from the main crack, at low to medium propagation
velocities [5–11]. Recent experiments performed on a class
of neo-Hookean (NH)—a nonlinear extension of linear,
Hookean elasticity—brittle materials revealed that upon
reducing the system’s thickness, approaching the two-
dimensional (2D) limit, the microbranching instability is
severely suppressed; as a result, straight cracks accelerate to
unprecedentedly high velocities, approaching the relevant
sonic velocity, until they undergo an oscillatory instability
[4,12,13].
Our understanding of these dynamic fracture instabilities

is far from complete. In particular, the classical theory of
brittle cracks—linear elastic fracture mechanics (LEFM)
[1,2]—intrinsically falls short of explaining these instabil-
ities [4,14,15]. Recently, integrating theoretical ideas about
the existence and importance of elastic nonlinearity near
cracks tips [4,13,16–19] into a phase-field fracture theory,
the 2D oscillatory instability in brittle NH materials has
been quantitatively reproduced in large-scale simulations
for the first time [14], cf. Fig. 1(a). The theory has shown,
in agreement with experiments, that the wavelength of
oscillations scales linearly with an intrinsic nonlinear
elastic length scale, which does not exist in LEFM, hence
explicitly demonstrating the failure of the classical theory
of brittle cracks.

This significant progress raised several pressing ques-
tions of fundamental importance. First, is the oscillatory
instability universal, i.e., observed in various brittle materi-
als independently of the nature and form of near tip elastic
nonlinearity? Second, what are the minimal physical
conditions for the existence of the oscillatory instability?
Third, are there additional, previously undiscovered insta-
bilities in 2D dynamic fracture? Finally, can one derive a
comprehensive stability phase diagram of two-dimensional
brittle fracture and if so, is it universal? In this Letter, we
extensively address these important questions using theo-
retical considerations and large-scale simulations in the
framework of the recently developed nonlinear phase-field
theory of fracture [14].
This theory belongs to a broader class of diffuse-inter-

face approaches to fracture [21–26] that avoid the difficulty
of tracking the evolution of sharp crack surfaces, and at the
same time allow a self-consistent selection of the crack’s
velocity and path, which are far from being understood in
general. These properties emerge from the dynamics of an
auxiliary phase field ϕ and its coupling to other fields,
which provide a mathematical machinery that renders the
fracture problem self-contained. In particular, it gives rise
to a dissipation-related length scale ξ and a fracture energy
ΓðvÞ (the energy dissipated per unit crack surface, where v
is the crack propagation velocity). The smooth transition in
space between the pristine (ϕ ¼ 1) and the fully broken
(ϕ ¼ 0) states of the material is initiated when the elastic
strain energy functional estrainðHÞ exceeds a threshold ec,
where H ¼ ∇u is the displacement gradient tensor and
uðx; y; tÞ is the displacement vector field.
Unlike previous phase-field approaches [22,23,25], the

formulation in [14] maintains the wave speeds constant
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inside the dissipation zone, thereby allowing cracks to
accelerate to unprecedentedly high velocities without
undergoing tip-splitting instabilities at marginally dynamic
velocities [27,28]. Moreover, estrainðHÞ is taken to be
nonlinear, introducing nonlinearity on a length l in the
near vicinity of the crack tip, while the linear elastic
(quadratic) approximation to estrainðHÞ remains very good
on larger scales. Hence, this theory features an intrinsic
dissipation length ξ and intrinsic length l associated with
near tip elastic nonlinearity, which can be independently
varied.
The strain energy functional eNHstrainðHÞ ¼ 1

2
μftrðFTFÞ þ

½detðFÞ�−2 − 3g of 2D incompressible NH materials [29],
where F ¼ I þH (I is the identity tensor) and μ is the shear
modulus, has been shown [14] to quantitatively predict
the experimentally observed oscillatory instability in 2D
brittle polymeric elastomers under tensile (mode I) loading

conditions [4,12,13]. Most notably, the oscillations [see
example in Fig. 1(a)] emerge at a critical velocity vc [see
the lower horizontal dashed line in Fig. 1(c)] and their
wavelength follows λ ¼ αξþ βΓ0=μ [shown by the squares
in Fig. 2(a)], both in quantitative agreement with experi-
ments [13,14]. Here, α and β are dimensionless numbers, ξ
is the dissipation length defined above, Γ0 ≡ Γðv → 0Þ,
and Γ0=μ is proportional to the intrinsic nonlinear elastic
length l [4,13,17,19]. eNHstrain is of entropic origin, which is
well understood in terms of the statistical thermodynamics
of cross-linked polymer chains [30].
To assess the generality of these results, our first goal is

to consider near tip elastic nonlinearity which is sufficiently
general, yet of qualitatively different physical origin and
emerging properties compared to eNHstrain. To that aim, we
invoke the minimal elastic nonlinearity associated with the
rotational invariance of isotropic materials. That is, we use
the rotationally invariant (Green-Lagrange) metric strain
tensor E ¼ 1

2
ðFTF − IÞ ¼ εþ 1

2
ðHTHÞ, instead of its

widespread linear approximation ε ¼ 1
2
ðH þHTÞ [31].

When combined with constitutive linearity, i.e., with a
quadratic energy functional in which the linearized strain
measure ε is replaced by its nonlinear rotationally invariant
counterpart E, we obtain

eSVKstrainðHÞ ¼ 1

2
λ̃tr2ðEÞ þ μtrðE2Þ: ð1Þ

This energy functional, corresponding to Saint-Venant-
Kirchhoff (SVK) materials [32], is constitutively identical
to linearized Hookean elasticity (where λ̃ is the first Lamé
constant [31]), but features geometric nonlinearity
embedded inside E.
While materials typically feature constitutive nonlinear-

ity in addition to geometric nonlinearity, they should at
least feature the latter, and hence Eq. (1) constitutes the
minimal possible elastic nonlinearity. eSVKstrain is not only of a
qualitatively different physical origin compared to eNHstrain,
but it also exhibits significantly different properties. In
Fig. 1(d), we plot the uniaxial tension response correspond-
ing to the two functionals, in addition to their linear elastic
approximation (the elastic constants are chosen such that
the latter is identical for both functionals). We observe that
eSVKstrain features a stronger nonlinearity than eNHstrain and is of a
strain-stiffening nature, while the latter is of a strain-
softening nature. Do materials described by eSVKstrain experi-
ence the same oscillatory instability as those described
by eNHstrain?
In Fig. 1(b) we present the results of a large-scale

numerical simulation of the nonlinear phase-field fracture
theory discussed above, using eSVKstrain (see simulation details
in [20]). An oscillatory instability that is strikingly similar
to the oscillatory instability shown in Fig. 1(a) for brittle
NH materials is observed. The onset of instability, see
example in Fig. 1(c) (top curve), takes place at an ultrahigh
critical velocity vc, whose normalized value is similar to the

FIG. 1. (a) An enlargement of the 2D oscillatory instability in a
phase-field simulation of brittle neo-Hookean (NH) materials
under tensile (mode I) loading [14]. The color code corresponds
to the normalized strain energy density and ξ is the dissipation
length. (b) The same, but for brittle Saint-Venant-Kirchhoff
(SVK) materials, see text and [20] for details. (c) Examples of
the normalized crack speed v=cs (cs is the shear wave speed) vs
normalized crack propagation distance d=ξ for SVK (top curve)
and NH materials (bottom curve). The onset of oscillations is
marked by the horizontal dashed lines. (d) The uniaxial stress σ
(normalized by the shear modulus μ) vs strain ε for SVK (solid
line) and NH materials (dashed line), along with their linear
approximation (dash-dotted line).

PHYSICAL REVIEW LETTERS 121, 134301 (2018)

134301-2



one of brittle NH materials (bottom curve). The fact that the
oscillatory instability exists for widely different forms of
near crack tip elastic nonlinearity provides a strong
indication in favor of its universal nature. In Fig. 2(a),
we present the oscillations wavelength of brittle SVK
materials demonstrating that it scales linearly with Γ0=μ,
λ ¼ αξþ βΓ0=μ, exactly as it does for brittle NH materials,
yet again supporting the universality of the oscillatory
instability. Remarkably, while β is significantly larger for
brittle SVK materials compared to brittle NH materials,
α ¼ 13� 1 is essentially identical for the two classes of
materials.
To address the apparent independence of α on the form

of near tip elastic nonlinearity and its physical implications,
we consider yet another energy functional. In selecting the
latter, we aim at addressing also a different question: Is the
wavelength significantly affected by strong elastic non-
linearity deep inside the near tip nonlinear elastic zone or
mainly by weak elastic nonlinearity, as predicted by the
weakly nonlinear theory of fracture [4,15,17]? To address
these questions, we consider the incompressible NH func-
tional truncated to leading order nonlinearity

eTNHstrainðHÞ=μ≃ trðε2Þ þ trðεÞ2 − 1

2
trðHÞ3 − 3

2
trðHÞtrðH2Þ

−
1

8
trðHÞ4 þ 9

4
trðHÞ2trðH2Þ þ 3

8
trðH2Þ2 þOðH5Þ: ð2Þ

Unlike the weakly nonlinear theory of fracture, which is an
analytic perturbative theory that takes into account only
cubic nonlinearity in the energy, here we are looking for
global numerical solutions and hence should include also
quartic nonlinearity to ensure the well-posedness of the
global fracture problem [20].
Phase-field theory calculations with eTNHstrain of Eq. (2)

demonstrated the existence of an oscillatory instability (not
shown), whose wavelength is essentially indistinguishable
from that of eNHstrain, as shown in Fig. 2(a) (diamonds).

This result indicates that weak elastic nonlinearity controls
the oscillatory instability and further highlights the inde-
pendence of α on the form of nonlinearity. The latter raises
an intriguing possibility; if elastic nonlinearity vanishes,
l ∝ Γ0=μ → 0, the results of Fig. 2(a) imply that λ ≈ 13ξ.
That is, the oscillatory instability may exist in the absence
of elastic nonlinearity, where its wavelength is determined
by the intrinsic dissipation length ξ.
This possibility is quite intriguing because, if true, it

means that near tip elastic nonlinearity is not necessary for
the existence of the oscillatory instability, which can
alternatively inherit its characteristic length from the dis-
sipation zone. The extensive calculations that gave rise to
the wavelength λ in Fig. 2(a), where the ratio Γ0=μ has been
reduced as much as possible within numerical limitations,
also showed that the amplitude of the oscillations dimin-
ishes as l ∝ Γ0=μ is reduced (see Fig. S3 in [20]). This
observation might support the possibility that the instability
exists with a finite wavelength and a vanishingly small
amplitude as elastic nonlinearity vanishes. Hence, the
observation in [14] in which no oscillatory instability is
observed when l ¼ 0, i.e., using the linear elastic (quad-
ratic) approximation of estrain to begin with, may simply be
explained in terms of a vanishing amplitude, not as
indicating the absence of instability in this limit. On the
other hand, based on presently available evidence, we
cannot exclude the possibility that the instability disappears
at a finite (yet very small) value of l ∝ Γ0=μ, as further
discussed below.
While α appears to be independent of the form of near tip

elastic nonlinearity, the slope β in the linear λ–Γ0=μ relation
does depend on it. To understand this dependence, recall
that the nonlinear length l is proportional to Γ0=μ, but is
not identical to it (e.g., Γ0=μ exists also in the absence of
elastic nonlinearity, while l does not) [4]. Consequently,
material dependence (in addition to v dependence) is
expected to be encapsulated in the proportionality factor.
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FIG. 2. (a) The normalized oscillations wavelength λ=ξ vs Γ0=μξ for SVK (circles), NH (squares), and truncated NH (diamonds)
materials. (b) The normalized nonlinear length l=ξ (l is defined in the text) vs Γ0=μξ for SVK (circles) and NH (squares) materials.
(c) λ=ξ vs l=ξ for SVK (circles) and NH (squares) materials. The lines are guides to the eye.
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To test this possibility, we should directly calculate l,
instead of using its dimensional estimate. To calculate l in
our large-scale simulations, we need to estimate the actual
length at which near tip nonlinearity becomes signi-
ficant. Any energy functional estrain can be uniquely
decomposed into its linear elestrain and nonlinear enlstrain ≡
estrain − elestrain parts. The region near the tip at which
k∂Henlstraink=k∂Helestraink becomes non-negligible can be used
to define l (k · k is the magnitude of a tensor, i.e., the
square root of the sum of the squares of its elements). In
particular, we define l≡ ffiffiffiffi

A
p

, where A is the area of the
region in which k∂Henlstraink=k∂Helestraink ≥ 0.5 (see Fig. S1
in [20]), consistently with earlier definitions [4]. While the
existence of a threshold (here 0.5) involves some degree of
arbitrariness in the definition of l, the results themselves do
not strongly depend on the exact threshold (see Fig. S2
in [20]).
In Fig. 2(b) we plot l (as just defined) vs Γ0=μ for both

NH and SVK brittle materials. For both types of materials
we observe l ∝ Γ0=μ, as predicted theoretically. Moreover,
the prefactor in this relation is significantly larger for SVK
materials compared to NH materials, which is consistent
with the already discussed stronger nonlinearity of the
former. In fact, the variability in the prefactor appears to be
similar in magnitude to the variability in the slope of the
linear λ–Γ0=μ relation shown in Fig. 2(a). To test whether
the material dependence of the prefactor indeed accounts
for the material dependence of the wavelength shown in
Fig. 2(a), we plot λ vs l in Fig. 2(c). We observe that the
two curves approximately collapse one on top of the other,
suggesting that in fact the oscillations’ wavelength follows
a universal master curve λ ¼ αξþ β̃l, where α and β̃ ¼
0.3� 0.07 are nearly material independent. These results
yet again strongly support the universal character of the 2D
oscillatory instability.
When the driving force for fracture W, i.e., the stored

elastic energy per unit area ahead of the crack, is suffi-
ciently large to allow cracks to accelerate to the critical
velocity vc, the oscillatory instability emerges. Are there
additional, previously undiscovered instabilities in 2D
dynamic fracture triggered when cracks are driven even
more strongly? When W is further increased, there exists a
range of driving forces for which steady-state oscillatory
cracks exist. As W is increased even more, a tip-splitting
instability emerges. It can emerge either from oscillatory
crack states (resulting in asymmetric tip splitting, as shown
in Fig. 3 and in the Supplemental Material, Movie S1 [20])
or directly from straight crack states (resulting in symmetric
tip splitting, as shown in Movie S2 in the Supplemental
Material [20]). This ultra-high-velocity tip-splitting insta-
bility in 2D dynamic fracture appears to be different from
previously studied 2D instabilities occurring at lower,
marginally dynamic, velocities [27,28,33–42] and from
the microbranching instability in 3D experiments [5].
In Fig. 3(a) we present tip splitting that emerges after

oscillations (see Supplemental Material, Movie S1 [20]).
Remarkably, such oscillations followed by tip splitting
have been recently observed under strong driving force
conditions in previously unpublished experiments on brittle
NH materials, see Fig. 3(b).
We are now in a position to construct a comprehensive

stability phase diagram of 2D dynamic fracture. The
analysis presented above indicates that the relevant dimen-
sionless parameters for such a stability phase diagram are
the ratio between the intrinsic nonlinear scale l ∝ Γ0=μ and
the intrinsic dissipation scale ξ, and the ratio between the
driving force for fracture W and the fracture energy scale
Γ0. The stability phase diagram in theW=Γ0–Γ0=μξ plane is
shown in Fig. 4 for both brittle SVK [panel (a)] and NH
[panel (b)] materials. For both classes of materials, for a
fixed and finite Γ0=μξ, the phase diagram exhibits the
sequence of transitions with increasing W=Γ0 described in
the previous paragraph; for W=Γ0 < 1 no crack propaga-
tion is possible (not shown), steady-state straight cracks
exist upon increasing W=Γ0 beyond unity over some range
of W=Γ0 (diamonds), then steady-state oscillatory cracks
exist over some range for yet larger values of W=Γ0

(circles), then tip splitting emerges (squares), either after

FIG. 3. (a) Oscillations followed by tip splitting in a phase-
field simulation of NH materials under a large driving force
(see Movie S1 in the Supplemental Material [20]). (b) The
corresponding experimental observation (experimental details
can be found in [10]).

(a) (b)

FIG. 4. Stability phase diagram of 2D dynamic fracture in the
W=Γ0–Γ0=μξ plane for SVK (a) and NH materials (b). Shown are
straight cracks (diamonds), oscillatory cracks (circles), and
oscillatory or straight cracks undergoing tip splitting (squares).
See Supplemental Material movies corresponding to the thick-
lined squares in panel (b) [20]. The upper thick-lined square also
corresponds to Fig. 3(a). The thick-lined circles in panels (a) and
(b) correspond to Figs. 1(b) and 1(a), respectively.

PHYSICAL REVIEW LETTERS 121, 134301 (2018)

134301-4



oscillations (asymmetric tip splitting, see Movie S1 in the
Supplemental Material [20]) or before (symmetric tip
splitting, see Movie S2 in the Supplemental Material [20]).
Interestingly, the W=Γ0 range over which oscillatory

cracks exist decreases with decreasing Γ0=μξ. In the limit
Γ0=μξ → 0, it appears to vanish altogether such that straight
cracks make a direct transition to tip-split cracks. While
present numerical limitations do not allow us to conclude
with certainty if the oscillatory instability exists or not in
the absence of near tip elastic nonlinearity, they at least
show that, if present, this instability would only exist over a
vanishingly small range of loading, with a vanishingly
small oscillations amplitude. Our results further strongly
indicate that minute near tip nonlinearity, which is likely to
exist in most materials, is sufficient to dramatically affect
the instability whose wavelength is essentially determined
by the dissipation length ξ. Finally, and most remarkably,
the salient properties and topology of the stability phase
diagram appear to be universal; i.e., they are the same for
two widely different forms of near tip nonlinearity.
In summary, we highlighted in this Letter the universal

nature of the 2D oscillatory instability whose wavelength
follows a universal master curve in terms of dissipation and
nonlinear elastic intrinsic lengths, demonstrated the exist-
ence of a high-velocity tip-splitting instability, and con-
structed a universal stability phase diagram of 2D dynamic
fracture. Future research should address the existence of the
oscillatory instability in the absence of near tip elastic
nonlinearity and the origin of the high-velocity tip-splitting
instability.
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[10] T. Goldman Boué, G. Cohen, and J. Fineberg, Phys. Rev.

Lett. 114, 054301 (2015).
[11] I. Kolvin, G. Cohen, and J. Fineberg, Nat. Mater. 17, 140

(2018).
[12] A. Livne, O. Ben-David, and J. Fineberg, Phys. Rev. Lett.

98, 124301 (2007).
[13] T. Goldman, R. Harpaz, E. Bouchbinder, and J. Fineberg,

Phys. Rev. Lett. 108, 104303 (2012).
[14] C.-H. Chen, E. Bouchbinder, and A. Karma, Nat. Phys. 13,

1186 (2017).
[15] E. Bouchbinder, Phys. Rev. Lett. 103, 164301 (2009).
[16] A. Livne, E. Bouchbinder, and J. Fineberg, Phys. Rev. Lett.

101, 264301 (2008).
[17] E. Bouchbinder, A. Livne, and J. Fineberg, Phys. Rev. Lett.

101, 264302 (2008).
[18] E. Bouchbinder, A. Livne, and J. Fineberg, J. Mech. Phys.

Solids 57, 1568 (2009).
[19] A. Livne, E. Bouchbinder, I. Svetlizky, and J. Fineberg,

Science 327, 1359 (2010).
[20] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.121.134301 for addi-
tional information.

[21] B. Bourdin, G. A. Francfort, and J.-J. Marigo, J. Mech.
Phys. Solids 48, 797 (2000).

[22] A. Karma, D. A. Kessler, and H. Levine, Phys. Rev. Lett. 87,
045501 (2001).

[23] V. Hakim and A. Karma, J. Mech. Phys. Solids 57, 342
(2009).

[24] A. J. Pons and A. Karma, Nature (London) 464, 85
(2010).

[25] R. Spatschek, E. Brener, and A. Karma, Philos. Mag. 91, 75
(2011).

[26] B. Bourdin, J.-J. Marigo, C. Maurini, and P. Sicsic, Phys.
Rev. Lett. 112, 014301 (2014).

[27] A. Karma and A. E. Lobkovsky, Phys. Rev. Lett. 92, 245510
(2004).

[28] H. Henry, Europhys. Lett. 83, 16004 (2008).
[29] J. K. Knowles and E. Sternberg, J. Elast. 13, 257 (1983).
[30] P. J. Flory and J. Rehner Jr., J. Chem. Phys. 11, 512

(1943).
[31] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed.

(Pergamon Press, London, 1986).
[32] G. A. Holzapfel, Nonlinear Solid Mechanics (Wiley,

Chichester, 2000).
[33] F. F. Abraham, D. Brodbeck, R. A. Rafey, and W. E. Rudge,

Phys. Rev. Lett. 73, 272 (1994).
[34] X. P. Xu and A. Needleman, J. Mech. Phys. Solids 42, 1397

(1994).
[35] M. Marder and S. Gross, J. Mech. Phys. Solids 43, 1 (1995).
[36] M. Adda-Bedia and M. Ben Amar, Phys. Rev. Lett. 76, 1497

(1996).
[37] M. Adda-Bedia, R. Arias, M. Ben Amar, and F. Lund, Phys.

Rev. Lett. 82, 2314 (1999).

PHYSICAL REVIEW LETTERS 121, 134301 (2018)

134301-5

https://doi.org/10.1146/annurev-conmatphys-070909-104019
https://doi.org/10.1146/annurev-conmatphys-070909-104019
https://doi.org/10.1088/0034-4885/77/4/046501
https://doi.org/10.1088/0034-4885/77/4/046501
https://doi.org/10.1016/S0370-1573(98)00085-4
https://doi.org/10.1007/BF01157550
https://doi.org/10.1007/BF01157550
https://doi.org/10.1103/PhysRevLett.67.457
https://doi.org/10.1103/PhysRevB.54.7128
https://doi.org/10.1103/PhysRevLett.94.224301
https://doi.org/10.1103/PhysRevLett.94.224301
https://doi.org/10.1103/PhysRevLett.114.054301
https://doi.org/10.1103/PhysRevLett.114.054301
https://doi.org/10.1038/nmat5008
https://doi.org/10.1038/nmat5008
https://doi.org/10.1103/PhysRevLett.98.124301
https://doi.org/10.1103/PhysRevLett.98.124301
https://doi.org/10.1103/PhysRevLett.108.104303
https://doi.org/10.1038/nphys4237
https://doi.org/10.1038/nphys4237
https://doi.org/10.1103/PhysRevLett.103.164301
https://doi.org/10.1103/PhysRevLett.101.264301
https://doi.org/10.1103/PhysRevLett.101.264301
https://doi.org/10.1103/PhysRevLett.101.264302
https://doi.org/10.1103/PhysRevLett.101.264302
https://doi.org/10.1016/j.jmps.2009.05.006
https://doi.org/10.1016/j.jmps.2009.05.006
https://doi.org/10.1126/science.1180476
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.134301
https://doi.org/10.1016/S0022-5096(99)00028-9
https://doi.org/10.1016/S0022-5096(99)00028-9
https://doi.org/10.1103/PhysRevLett.87.045501
https://doi.org/10.1103/PhysRevLett.87.045501
https://doi.org/10.1016/j.jmps.2008.10.012
https://doi.org/10.1016/j.jmps.2008.10.012
https://doi.org/10.1038/nature08862
https://doi.org/10.1038/nature08862
https://doi.org/10.1080/14786431003773015
https://doi.org/10.1080/14786431003773015
https://doi.org/10.1103/PhysRevLett.112.014301
https://doi.org/10.1103/PhysRevLett.112.014301
https://doi.org/10.1103/PhysRevLett.92.245510
https://doi.org/10.1103/PhysRevLett.92.245510
https://doi.org/10.1209/0295-5075/83/16004
https://doi.org/10.1007/BF00042997
https://doi.org/10.1063/1.1723791
https://doi.org/10.1063/1.1723791
https://doi.org/10.1103/PhysRevLett.73.272
https://doi.org/10.1016/0022-5096(94)90003-5
https://doi.org/10.1016/0022-5096(94)90003-5
https://doi.org/10.1016/0022-5096(94)00060-I
https://doi.org/10.1103/PhysRevLett.76.1497
https://doi.org/10.1103/PhysRevLett.76.1497
https://doi.org/10.1103/PhysRevLett.82.2314
https://doi.org/10.1103/PhysRevLett.82.2314


[38] M. J. Buehler, F. F. Abraham, and H. Gao, Nature (London)
426, 141 (2003).

[39] M. Adda-Bedia, Phys. Rev. Lett. 93, 185502 (2004).
[40] E. Bouchbinder, J. Mathiesen, and I. Procaccia, Phys. Rev. E

71, 056118 (2005).

[41] R. Spatschek, M. Hartmann, E. Brener, H. Muller-
Krumbhaar, and K. Kassner, Phys. Rev. Lett. 96, 015502
(2006).

[42] D. Pilipenko, R. Spatschek, E. A. Brener, and H. Muller-
Krumbhaar, Phys. Rev. Lett. 98, 015503 (2007).

PHYSICAL REVIEW LETTERS 121, 134301 (2018)

134301-6

https://doi.org/10.1038/nature02096
https://doi.org/10.1038/nature02096
https://doi.org/10.1103/PhysRevLett.93.185502
https://doi.org/10.1103/PhysRevE.71.056118
https://doi.org/10.1103/PhysRevE.71.056118
https://doi.org/10.1103/PhysRevLett.96.015502
https://doi.org/10.1103/PhysRevLett.96.015502
https://doi.org/10.1103/PhysRevLett.98.015503

