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We report the first experimental observation of the time-driven phase transition in a canonical quantum
chaotic system, the quantum kicked rotor. The transition bears a firm analogy to a thermodynamic phase
transition, with the time mimicking the temperature and the quantum expectation of the rotor’s kinetic
energy mimicking the free energy. The transition signals a sudden change in the system’s memory
behavior: before the critical time, the system undergoes chaotic motion in phase space and its memory of
initial states is erased in the course of time; after the critical time, quantum interference enhances the
probability for a chaotic trajectory to return to the initial state, and thus the system’s memory is recovered.
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Quantum chaos is usually defined as the behavior of a
quantum system whose classical limit is chaotic [1], and
has long been an elusive subject. Quantum and classical
chaos may differ dramatically because Schrödinger’s equa-
tion is linear, and does not lead to the sensitivity to initial
conditions, which is the main characteristic of classical
chaos. A particularly important consequence is that
classical chaos erases the memory of initial states rapidly,
whereas quantum chaos can remember an initial state at
long times. A natural question is thus, how, precisely, the
interplay between classical chaos and quantum effects leads
to the recovery of memory. For sufficiently short times, the
behavior of a quantum system is (largely) classical; only
after quantum interference effects are built up has the
dynamics become truly quantum. For quantum chaos this
happens at the so-called Ehrenfest time, when quantum-
classical correspondence breaks down [2]. This question is
crucial not only to understand quantum-classical corre-
spondence in chaotic systems but also to realize quantum
control of chaos. In addition, it can shed new light on many
intriguing chaotic phenomena found in a variety of quan-
tum systems recently (see, e.g., Refs. [3–9]). Whereas this
interplay has been investigated theoretically from different
perspectives [10–17], experimental results are rare: most
experiments focus on the deep quantum regime, where
information on classical chaos is difficult to extract, and
thus cannot address the interplay and memory recovering
processes.
The experimental results and the theoretical interpreta-

tion presented in this work show the existence of a time-
driven phase transition directly related to this interplay. By
studying the early dynamics of a quantum chaotic system,

we observe a nonanalyticity in the time dependence of
a measurable observable. This nonanalyticity is a direct
evidence of a sudden change in the system’s memory
behavior, which can be attributed to the subtle quantum
interference effects arising from the quantum chaotic
nature of the system. This is a striking difference between
the classical chaotic and the quantum chaotic behaviors,
shedding important new light on classical to quantum
chaos transition.
We study a “standard model” of quantum chaos, the

quantum kicked rotor (QKR), which is a quantum particle
moving on a ring under the influence of sequential pulsed
driving in time (“kick”) [18]. Despite its simplicity, the
QKR embodies the most important properties of generic
quantum chaotic systems, the realization of which remains
challenging. As such, the QKR has become a paradigmatic
system in experimental studies of quantum chaos (see
Ref. [19] for a review). Its Hamiltonian is time dependent
and assumes a general form,

ĤðtÞ ¼ p̂2

2
þ K cos ½x̂ − aðtÞ�

X
n

δðt − nÞ; ð1Þ

where all quantities are rescaled and dimensionless (see
below the description of the experiment for details).
The first term in ĤðtÞ describes the rotor’s free motion
and the second the driving switched on at integer times
t ¼ n, the kicking strength is K, and the reduced Planck’s
constant �k gives ½x̂; p̂� ¼ i�k. The above model differs from
the standard QKR by the presence of a phase modulation
aðtÞ. By varying aðtÞ, rich dynamical phenomena arise.
When aðtÞ is constant, the system reduces to the standard
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QKR, which exhibits dynamical localization, an analog
of Anderson localization in one-dimensional disordered
systems [20]. When aðtÞ is modulated by (d − 1) incom-
mensurate frequencies which are all, as well as �k,
incommensurate with 2π, the system is equivalent to a
d-dimensional periodic QKR and can simulate the
Anderson transition in d dimensions [21,22]. When
aðtþ NÞ ¼ aðtÞ (N ¼ 2; 3;…), the periodically shifted
QKR results, whose studies were initiated in Ref. [16]
and have been advanced recently [23,24]. Below we will
focus on the standard and the periodically shifted QKR.
The QKR allows us, for the first time, to study

experimentally the memory recovery in quantum chaotic
systems. The basic idea is as follows. First, the rotor’s
memory behavior can be characterized by the time corre-
lation function of angular position, defined as [10]

CqðtÞ≡ K2

2
h0j sin x̂ðtÞ sin x̂ð0Þ þ sin x̂ð0Þ sin x̂ðtÞj0i; ð2Þ

where jpi stands for the unperturbed angular momentum
state. Then, as shown in Supplemental Material [25], Cq

has a simple relation to the expectation value of the rotor’s
energy growth, 1

2
hδp2ðtÞi≡ 1

2
hp2ðtÞ − p2ð0Þi, which is

CqðtÞ ¼
1

2

d2

dt2
hδp2ðtÞi: ð3Þ

This suggests that the rotor’s memory behaviors can be
probed by the time derivatives of hδp2ðtÞi. Crucially, as
hδp2ðtÞi can be measured directly in experiments, we can
explore how the system’s memory behaviors change in
time.
Building on this idea, we performed an experiment on

the atom-optics realization of QKR, and measure the
energy growth hδp2ðtÞi at early time; see below for details.
We found that hδp2ðtÞi displays a nonanalyticity at some
critical time t�E. More precisely, the second-order derivative
of hδp2ðtÞi has a discontinuity:

CqðtÞ ¼
�
0 t < t�E
cðt − t�EÞ−ν t > t�E;

ð4Þ

where a positive (vanishing) exponent ν corresponds to
the divergence (jump), and the lower order derivatives are
continuous. The value of ν is completely determined by
the system’s symmetry, and is universal with respect to the
system’s details. The latter only affect the values of t�E
and the proportionality coefficient c. Loosely speaking,
t�E marks the onset of quantum interference and thus has
the same physical meaning as the Ehrenfest time. The
Ehrenfest time is a very difficult quantity to access
experimentally, and our work reports its first measure-
ment. Equation (4) shows, quantitatively, that the system’s
memory behavior undergoes a sudden change: for t < t�E,

the memory of the initial states is erased, while from t�E on
quantum interference starts destroying classically chaotic
behavior and the memory is recovered.
From Eqs. (3) and (4) we see that the nonanalyticity of

CqðtÞ bears a firm analogy to the second-order phase
transitions in thermodynamics. To be specific, t mimics
the temperature, hδp2ðtÞi the free energy, and ν the critical
exponent. This behavior arises from the interplay between
classical chaos and quantum interference, and is thus
expected to hold in more general quantum chaotic systems.
Note that time-driven phase transitions in quantum systems
have attracted much attention recently, both theoretically
and experimentally [26–28], but so far investigations have
been restricted to nonchaotic systems. Our results give
new insight on the fundamental aspects of dynamical
phase transitions, from the perspective of quantum chaotic
systems.
In order to discuss a physical picture for phenomena

discussed above, we first show how changing the periodic
modulation of aðtÞ leads to distinct symmetries. Let us start
from the simplest case, N ¼ 1, namely, the standard QKR.
The transformation t → −t, x̂ → −x̂, p̂ → p̂ leaves ĤðtÞ
invariant. Thus, the standard QKR bears time-reversal (Tc)
symmetry, with x̂ mimicking the electron momentum and p̂
the position in conventional disordered electronic systems
[29]. Owing to this symmetry, the dynamical localization in
the standard QKR [18,20] is an analog of Anderson
localization in time-reversal invariant spinless systems
[30]. For N > 2, other symmetry classes can be realized
[16,24]. In particular, one can randomly choose the modu-
lation configuration: fað0Þ ¼ 0; að1Þ;…; aðN − 1Þg. In this
case, the Floquet operator is a product of N successive one-
step evolution operators, and can be checked to break the Tc
symmetry [31]. The ensuing dynamical localization is an
analog of Anderson localization in broken time-reversal
systems [16]. The symmetry effects of periodic modulation
can manifest in distinct fluctuation behaviors of the quasiei-
genenergy spectrum of Floquet operators [25].
The origin of the observed time-driven phase transition

can be understood from simple arguments, and a heuristic
determination of the “critical exponent” ν can be obtained
for distinct symmetries. The Wigner representation yields
a natural connection between classical and quantum
rotors. In this representation a quantum state corresponds
to a Planck’s cell of size �k in the phase space, spanned by
the coordinates x and p; in the classical limit �k → 0, the
cell shrinks to a point and a classical state results. For
short evolution times, t < t�E, quantum effects basically
play no role, and the center of Planck’s cell moves along a
classical trajectory. As the classic dynamics is chaotic,
trajectories initially close to each other separate exponen-
tially at later times. Hence, the memory of the initial state
γ0 ≡ (xð0Þ; pð0Þ) is erased; i.e., γ0 is uncorrelated with the
evolving state γt ≡ (xðtÞ; pðtÞ), and CqðtÞ defined by
Eq. (2) vanishes [Fig. 1(i)]. For long evolution times,
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t > t�E, due to dynamical instability, trajectories initiating
from the same Planck’s cell reach a large separation at t�E
(Fig. 1, bottom left) and wander independently at later
times. However, interferences between trajectories can
enhance the probability for them to meet again in the
initial cell centered at γ0 (Fig. 1, bottom right) or its
time-reversal conjugate, centered at γ̄0 ≡ ( − xð0Þ; pð0Þ)
(Fig. 1, bottom middle), depending on whether the Tc
symmetry is absent or present. The memory of the initial
state is thereby recovered. We consider separetely two
cases.
(i) Tc-symmetric case.—A trajectory connecting γ0 and

γ̄0 and its time reversal have the same phase [Fig. 1(ii)] and
thus interfere constructively. Therefore, the probability for
them to meet in the cell centered at γ̄0 is enhanced. Since
the motion in the p direction is diffusive, the probability is
∼ðt − t�EÞ−1=2. This gives the critical exponent:

ν ¼ 1=2: ð5Þ
In addition, when the trajectory returns to the origin of
momenta [pðtÞ ¼ pð0Þ], one has xðtÞ ¼ −xð0Þ (recall that
xmimics the electron velocity in usual disordered systems).
This interference effect is called, in the context of disor-
dered systems, coherent backscattering. Moreover, because
xðtÞ ¼ −xð0Þ, we find CqðtÞ ∼ sin xðtÞ sin xð0Þ < 0.
(ii) Broken Tc symmetry case.—A trajectory can pass the

cell centered at γ0 twice, forming two loops in phase space
[Fig. 1(iii)]. A trajectory passing these two loops has the
same phase as the one passing the same loops in the
reversed order, they thus interfere constructively with each
other even in the absence of Tc symmetry; the probability
of returning simultaneously to the initial cell γ0 is

thus enhanced. This probability can be estimated as
∼
R
t
t�E
dt0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt0−t�EÞðt−t0Þp ¼πðt−t�EÞ0, with each inverse

square root factor accounting for the probability of forming
a loop. Thus, the critical exponent is

ν ¼ 0: ð6Þ
Because the trajectory returns to the origin of momenta
with xðtÞ ¼ xð0Þ, this effect is called coherent forward
scattering [32]. In addition, because xðtÞ ¼ xð0Þ, the corre-
sponding contribution to CqðtÞ is ∼ sin xðtÞ sin xð0Þ > 0.
In fact, there is another contribution which is of the same
order but negative, arising from the backward scattering
xðtÞ ¼ −xð0Þ. It dominates the positive contribution
[cf. Eq. (9) below]; thus, CqðtÞ < 0.
Having summarized the findings and discussed their

physical implications, we now present a detailed descrip-
tion of the experiment and its theoretical analysis. We used
an atomic kicked rotor realization [33] with laser-cooled
atoms. Cesium atoms of massM are submitted to a periodic
series (of period T1) of pulses of a one-dimensional
sinusoidal potential, of a short duration τ. The potential
is realized using a far-detuned laser standing wave (SW),
formed by two independent counterpropagating laser
beams, with wave number kL. If the distance traveled by
the atom during the pulse duration τ is small compared to
k−1L , the pulse can be considered as a Dirac function, and the
atom’s motion is described by the Hamiltonian Eq. (1),
where time is rescaled by T1, space by 1=ð2kLÞ, and
momentum by M=ð2kLT1Þ. In these units, the reduced
Planck’s constant is �k ¼ 4ℏk2LT1=M (ℏ is the Planck’s
constant). The scaled kick amplitude is K ∝ I=jΔj, with I
the maximum laser intensity andΔ the laser-atom detuning.
The phase shift aðtÞ in Eq. (1) is realized by imposing
a relative phase between the two laser beams forming
the standing wave, whose temporal profile can be easily
changed [24].
We load a cloud of about 106 cesium atoms in a standard

magneto-optical trap and cool it to a temperature of a few
microkelvin by an optimized molasses. The cloud is then
exposed to pulses of a vertical SW with the following
parameters: wavelength 852 nm, T1 ¼ 9.6 μs, τ ¼ 0.2 μs,
Δ ¼ −13 GHz (spontaneous emission can thus be
neglected during the experiments), waist 0.8 mm, and
I ¼ 30 W=cm2. By adding a linear chirp of the relative
frequency of the beams, we generate a SWwhose nodes are
accelerated, and this acceleration is adjusted to match the
gravity’s acceleration, so that in the (noninertial) reference
frame in which the SW is at rest, an inertial force exactly
compensates gravity [22]. At the end of the kick sequence,
the atomic momentum distribution Πðp; tÞ is detected by a
standard time-of-flight measurement. From Πðp; tÞ we
obtain [34]

δhp2ðtÞi ¼
Z

dpp2½Πðp; tÞ − Πðp; 0Þ�: ð7Þ

FIG. 1. The time-driven phase transition at the critical time
t�E (top) signals a sudden change in system’s memory behavior
(middle). For t < t�E, the systemwanders randomly in phase space,
and the initial state γ0 and the evolving state γt are uncorrelated (i).
For t > t�E, two trajectories (blue solid and red dashed lines)
departing from Planck’s cell centered at γ0, due to dynamical
instability (bottom), can interfere constructively and meet again
with a significant probability in the same cell (iii) or in the cell (ii)
centered at γ̄0 (which is the time-reversed conjugate of γ0)
after long wandering; thus the memory of the initial state is
recovered.
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In order to explore the interplay between quantum effects
and classical chaos, a small �k is preferable, so that the
timescale at which localization effects dominate is longer
than the duration of the experiment [18,20]. However, the
requirement that τ ≪ T1 prevents us from reaching too small
values �k [36]; we thus choose �k ≃ 1 in the experiments.
We first consider the standardQKR [i.e.,aðtþ NÞ ¼ aðtÞ

with N ¼ 1], which exhibits the Tc symmetry. The
decoherence rate that limits the duration of the experiments
increases with K, so we choose K ¼ 5.5, for which the
classical dynamics is strongly chaotic [37]. The measure-
ments of δhp2ðtÞi are displayed in the inset of Fig. 2.At early
times, its growth is linear, δhp2ðtÞi ¼ 2D0t with D0 the
diffusion coefficient, corresponding to the classical chaotic
behavior. This implies that the system wanders stochasti-
cally in phase space and exhibits a (normal) diffusion in
momentum. Figure 2, displaying δhp2ðtÞi − 2D0t, clearly
shows that the growth is purely linear up to a critical time t�E,
from which it starts to deviate from the classical behavior.
To determine t�E and analyze the measurements beyond

this critical time, we need to turn the qualitative discussions
above on the origin of the time singularity into a quanti-
tative theory. This has been done by one of us and co-
workers in Refs. [15,16] by using the diagrammatic
technique, leading to the Ehrenfest time-dependent weak
dynamical localization theory. According to that theory, for
the standard QKR we have

δhp2ðtÞi ¼ 2D0

�
t −

4

3
ffiffiffi
π

p θðt − t�EÞ
ðt − t�EÞ3=2

t1=2loc

�
; ð8Þ

where tloc is the localization time and θðtÞ the Heaviside
function. The scaling law∼ðt − t�EÞ3=2 accounts for theweak

dynamical localization, arising from constructive interfer-
ence between a trajectory and its time reversal [Fig. 1(ii)],
which exists only for t ≥ t�E. Equation (8) shows that δhp2ðtÞi
measured at integer t can be embedded into a curve which is
continuous in t. This curve exhibits a singularity at the
Ehrenfest time t�E (not necessarily an integer). Namely, upon
taking the second-order derivative of Eq. (8) we obtain
Eq. (4), and the exponent ν ¼ 1=2, as expected from the
qualitative discussions (Fig. 1). Numerical simulations con-
firming this behavior at small �k (not achievable experimen-
tally) are presented in the Supplemental Material [25].
Equation (8) was derived analytically for K ≫ 1 ≫ �k.

For present parameters we expect it to remain valid
qualitatively—as the physical picture of the second term
is quite general—but not quantitatively. We will thus use
tloc as an additional fitting parameter. Our fitting procedure
of the experimental data is as follows: First, we pick a time
t0, and perform a linear fit δhp2ðtÞi from t ¼ 0 to t ¼ t0 to
extract a diffusion coefficient D0; we then perform a two-
parameter fit of the full data using t�E and tloc as parameters
(keeping D0 fixed); if t0 > t�E or if t0 ≪ t�E, we reestimate
D0 by setting t0 to t�E and repeat the procedure until t0 and
t�E converge. As shown in Fig. 2, the measurements are
in good agreement with Eq. (8) for tloc ¼ 33 and t�E ¼ 4.7.
A vanishing t�E, as predicted in the QKR analog [38] of
standard weak localization in disordered systems [39], is
clearly inconsistent with the experimental data.
The weak dynamical localization theory with broken Tc

symmetry [16] can be generalized to the periodically
shifted QKR. Specifically, we have

δhp2ðtÞi ¼ 2D0

�
tþ

X2
i¼1

ð−1Þi
itloc

θðt − t�EiÞðt − t�EiÞ2
�
; ð9Þ

where the last two terms are weak dynamical localization
corrections, and the Ehrenfest times t�E1;2 are different in
general. Comparing Eqs. (8) and (9), we find that the power
3=2 law is replaced by a quadratic law. This is because
when the Tc symmetry is broken, the constructive inter-
ferences between two trajectories have more complicated
patterns. In particular, the term with i ¼ 2 in Eq. (9) is
positive, corresponding to the pattern shown in Fig. 1(iii).
The positivity arises from the forward scattering: xðtÞ ¼
xð0Þwhen a trajectory returns to the momentum origin; i.e.,
pðtÞ ¼ pð0Þ. The second term is negative, and the neg-
ativity arises from the backward scattering: xðtÞ ¼ −xð0Þ
when pðtÞ ¼ pð0Þ.
To experimentally realize a periodically shifted QKRwith

brokenTc symmetry, we setN ¼ 4,�k ¼ 1, andK ¼ 3.9, and
average over 100 sets fað1Þ; að2Þ; að3Þ; að4Þg picked ran-
domly [31]. We have checked numerically that the classical
dynamics is strongly chaotic. Figure 3 displays the mea-
surements of δhp2ðtÞi, andwe use the same fitting procedure
as above to extract first D0 and then tloc, t�E1, and t

�
E2. Good

FIG. 2. Experiments on the standard QKR (N ¼ 1, K ¼ 5.5,�k ¼ 1), that displays Tc symmetry, confirm a time-driven phase
transition, manifesting in the time profile of δhp2ðtÞi − 2D0t.
Experimental data (symbols) are well described by Eq. (8), with
tloc and t�E treated as fitting parameters, and show a time
singularity at t�E ¼ 4.7 (green solid line). The data are incom-
patible with t�E ¼ 0 (pink dotted line). Inset: Same as main panel,
showing δhp2ðtÞi instead. The black dashed line represents the
linear growth due to diffusion.
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agreement with measurements is found if we set
t�E1 ¼ t�E2ð≡t�EÞ, which yields t�E ¼ 10.2 and tloc ¼ 163.
These data do not, however, allow us to clearly distinguish
different t�E1;2 values, because of the limited accessible
parameter range. We also see that when t�E1;2 are set to zero,
Eq. (9) is incompatiblewith themeasurements. This provides
strong evidence of a time singularity at finite t�E, with ν ¼ 0,
which again signals a sudden change in the system’smemory
behavior.
In conclusion, our measurements are fully compatible

with the existence of a time-driven phase transition in
quantum chaotic systems, with the critical time being the
Ehrenfest time. We took advantage of the flexibility of
ultracold atoms experiments to finely study exotic effects
in the short-time dynamics of quantum chaotic systems.
This paves the way for a detailed study of the all-time
dynamics of such systems. Finally, we remark that the
QKR is a one-body system. In the future, it would be
interesting to theoretically investigate the time-driven
phase transition in many-body quantum chaos currently
under intensive investigations [4,40].
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