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We study experimentally and theoretically the interactions among ultrashort optical pulses in the soliton
rain multiple-pulse dynamics of a fiber laser. The laser is mode locked by a graphene saturable absorber
fabricated using the mechanical transfer technique. Dissipative optical solitons aggregate into pulse
bunches that exhibit complex behavior, which includes acceleration and bidirectional motion in the moving
reference frame. The drift speed and direction depend on the bunch size and relative location in the cavity,
punctuated by abrupt changes under bunch collisions. We model the main effects using the recently
proposed noise-mediated pulse interaction mechanism, and obtain a good agreement with experiments.
This highlights the major role of long-range Casimir-like interactions over dynamical pattern formations

within ultrafast lasers.
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Dissipative solitons are localized waves in open systems
far from equilibrium, whose existence results from a
balance of dissipative and dispersive effects. They appear
in numerous physical areas including reaction-diffusion
systems, neurological and ecological sciences, fluid
dynamics, and photonics [1,2]. In photonics, spatial dis-
sipative solitons are stabilized by dynamical attractors and
evolve like discrete particles in effective media [3]. A major
challenge in their study is the distillation of an effective
low-dimensional dynamical system governing pulse posi-
tion and speed [4], which would determine the temporal
evolution of multiple-pulse patterns. This implies an
effective modeling of pulse interactions whose range and
complexity are determined by the physical system. Mode-
locked fiber lasers exhibit an extensive pallet of short and
long-range pulse interactions. The former take place when
pulse tails overlap [5-8], and the latter when pulses interact
over separations orders of magnitude beyond their indi-
vidual extension—and are hence mediated. In fiber lasers,
where slow gain depletion and recovery dynamics create an
effective long-range repulsive force [9], soliton pulses can
distribute equally along the cavity (harmonic mode lock-
ing) [10]. Other interactions can be mediated by perturba-
tions of an extended background field or propagation
medium (e.g., electrostriction [11,12]).

Pulse interactions and soliton molecule formation in
fiber lasers for long hinted at the existence of long-range
attractive interactions, mediated by a background cavity
field [8,10,13]. Recently, an interaction mechanism com-
bining the effect of gain depletion in the presence of a noisy
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quasicontinuous wave permeating the laser cavity was
discovered [14]. The interaction results from reduced field
fluctuations consecutive to gain depletion, following the
passage of a pulse. Fluctuation reduction decreases the
pulse temporal jitter, thereby biasing it and setting a pulse
motion. This noise-mediated interaction (NMI) mechanism
shares some intriguing properties with the Casimir effect in
quantum electrodynamics [15], where macroscopic objects
experience an effective interaction as a consequence of the
suppression of electromagnetic field fluctuations. In NMI
(although essentially a nonequilibrium effect), and the
Casimir effect, distant objects inhibit microscopic fluctua-
tions in extended electromagnetic modes. The consequent
breaking of spatiotemporal homogeneity gives rise to weak
interactions between these objects. Fortunately, in ultrafast
laser systems the NMI mechanism is readily observable
despite its relative weakness, which makes it work on the
convenient second timescale. In the optical setting, NMI
naturally combine with other interactions to create inter-
esting stationary and variable pulse configurations, making
it an excellent platform to study Casimir-like forces.
Finite gain relaxation time leads to a dynamical system
with broken parity symmetry, resulting in Aristotelian
forces where the action-reaction principle is violated.
This was underlined in the different physical context of
a cavity-extended semiconductor laser system [16], where
the gain relaxation time is much shorter than the cavity
roundtrip time, long-range interactions are absent, and
dissipative solitons qualify as individually addressable
localized structures [17]. In contrast, within the fiber laser
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platform, the long-range interactions among dissipative
solitons lead to self-organized pattern formations, station-
ary as well as dynamic ones, which thrive over the entire
laser cavity.

Soliton rain (SR) is dramatic multiple-pulse phenome-
non, allowing processes of soliton pulse formation, drift,
and collision to be followed in real time on an oscilloscope
monitor. The SR dynamics takes place when multiple
solitons interact in the presence of a noisy continuum field
whose time-averaged power is nonuniform. In the strong
continuum region, large fluctuations trigger the formation
of new solitons that drift toward a compact soliton bunch—
dubbed as the condensed soliton phase, which straddles a
strong-weak continuum transition. The condensed soliton
phase radiates energy, conserving an average number of
constituents. SR displays a pattern of drift, collision, and
radiation, analogous to the cycle of water in the natural
environment. It was discovered experimentally in a fiber
laser employing nonlinear polarization evolution, a method
producing an effective saturable absorber (SA) effect
[18,19], and its universal dynamic features confirmed using
other cavity architectures [20,21] and different SA types,
including graphene [22]. Until now, however, there has not
been any pulse interaction model explaining the dramatic
soliton drift motions observed in the SR dynamics.

In this work we study the implications of the NMI theory
in the SR dynamics using experimental, analytical and
numerical approaches. We find the SR regime as being the
most appropriate dynamical regime able to reveal, for the
first time, such dramatic importance of Casimir-like inter-
action among a large variety of dissipative optical struc-
tures. We construct an all-fiber laser cavity, easily driven
into the many-pulse regime at low pump intensity by
employing a graphene SA requiring a low saturation
power [23]. From the laser output, we record a wide range
of experimental data, modeled using an analytic expression
based on NMI theory. Numerical simulations, tracking
soliton drift motions, exhibit good qualitative agreement
with the experiment, and assert NMI as a dominant
mechanism in long-range pulse interactions in fiber lasers.

The realization of graphene SA for low-power fiber
lasers involves the placement of graphene flakes on the
fiber core, achievable using methods such as liquid phase
exfoliation [24-26], chemical vapor deposition [27-29],
carbon segregation [30], and micromechanical cleavage
[31,32]. Here we developed a novel method to deposit clean
graphene flakes on the core of an optical fiber, utilizing the
mechanical transfer technique [33] which involves exfolia-
tion of van der Waals materials on a sacrificial substrate,
and their subsequent placement at desired locations.
Graphene is first exfoliated on top of polydimethylsiloxane
(PDMS), where it is identified and characterized. We then
place the graphene precisely on top of the optical fiber core.
This method allows on-demand positioning of high quality
graphene flakes of desired shape and size, while retaining
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FIG. 1. Experimental environment. (a) Bilayer graphene flake

following transfer on the top of the fiber facet, covering the entire
core, forming a graphene-based saturable absorber (scale bar
10 pym). Inset: The same graphene flake before transfer, on top of
PDMS (scale bar 20 ym). (b) The ultrafast fiber laser setup,
integrating the graphene saturable absorber (GSA). See text for
abbreviations. (c) Autocorrelation trace, 1.1 ps wide and approx-
imately hyperbolic-secant shaped (fit). (d) Optical spectrum, and
(e) oscilloscope trace of the pulse train.

their crystallographic integrity. We expect it to find multiple
applications in fiber-integrated 2D structures. This is
shown in Fig. 1(a), where the inset depicts a microscope
image of a bilayer graphene flake on PDMS. The flake is
transferred onto an angled-physical-contact ferrule con-
nector (FC-APC) or a bare fiber adapter connected with a
fiber FC adapter. The main panel presents an image of the
graphene flake covering the entire fiber core (blue outline).

The laser setup [Fig. 1(b)] is an all-fiber integrated
ring cavity, 15.3-m long, utilizing a 10-m erbium-doped
fiber (EDF) gain medium. The EDF is core pumped by a
1480-nm diode laser through a wavelength-division
multiplexer (WDM). A polarization-independent optical
isolator (ISO) ensures unidirectional lasing, and a fiber
polarization controller (PC) tunes the overall low cavity
birefringence. The GSA is sandwiched between the APC
connectors of single-mode fiber jumpers, and a 20/80
coupler provides the laser output. The cavity dispersion is
anomalous, at —28 ps?. The mode-locking operation self-
starts at a threshold pump power P =43 mW, and is
maintained up to P = 300 mW. The output power scales
almost linearly with the pump power above threshold, with
a maximum of 32 mW at P = 300 mW. The ultrafast laser
output is analyzed with an optical spectrum analyzer, a
multishot optical autocorrelator based on second-harmonic
generation, and a fast photodiode connected to a real-time
oscilloscope. The autocorrelation trace of the mode-locked
pulses after a ~50 cm single mode fiber lead is shown in
Fig. 1(c). Assuming a squared hyperbolic-secant (sech)
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temporal power profile, the deconvolution indicates a pulse
duration of ~1.1 ps. The time-bandwidth product is 0.33,
very close to the Fourier-transform limit of 0.315 for sech
pulses, confirming the major role of the soliton pulse
shaping in this regime. A typical mode-locked output
spectrum is displayed in Fig. 1(d). The central wavelength
is 1575 nm, and the full width at half maximum (FWHM)
bandwidth is ~2.5 nm. In the time domain trace, Fig. 1(e),
the pulse train period is 76.5 ns, as expected from the
fundamental repetition frequency of a 15.3 m-long fiber
cavity.

For laser cavities endowed with an anomalous dispersion,
soliton pulse shaping leads to a pulse energy limitation that
mainly scales with the ratio between the cavity dispersion
and the fiber effective nonlinearity. We estimate the intra-
cavity single-pulse energy and peak power to be ~50 pJ and
~40 W, respectively. Consequently, beyond a minimal
pumping level, single-pulse operation becomes unstable,
leading to nucleation of additional pulses [10,34-36].
Relatively low pulse energy favors multiple pulsing with
large pulse numbers, a prerequisite to SR dynamics.
Whereas stationary multi-pulse patterns are commonly
produced, ranging from loose pulse bunches to compact
soliton molecules [10,36], higher pumping is liable to
trigger dynamical instabilities leading to non-stationary
states, from pulsating to chaotic ones [18,19,37-41].
Nevertheless, within a large range of parameters, solitonic
pulse shaping dominates, allowing the complex waveforms
to be well described as superpositions of identical moving
pulses on a weak inhomogeneous and noisy background, as
is the case within SR dynamics.

The SR dynamics is presented in Fig. 2. Panel (a) is a
spatiotemporal representation combining a succession
of numerous oscilloscope traces recorded over 15 s. The
intense line on the left represents the condensed soliton
phase, which repeats after a single cavity roundtrip of
76.5 ns. It serves as the oscilloscope fast time trigger
reference, and an anchor for the soliton trajectories. The
slow time is the actual time passing over successive
roundtrips. The rich soliton dynamics reveals itself in
the form of complex pulse trajectories relative to the
anchor. Soliton pulse bunches form in regions of strong
continuum, and subsequently drift and collide with other
pulses until they reach the condensed soliton phase.
Between such merge effects, the anchor energy appears
to reduce, in analogy to the evaporation of a condensed
phase [21]. Note that the structure of soliton bunches is not
resolved in the time domain, owing to the limited oscillo-
scope bandwidth. Consequently, pulse bunches appear
as large pulses on the oscilloscope trace, whose amplitude
is proportional to the number of pulse constituents, all
pulses having the same energy [21]. Particular traces
corresponding to the red dashed horizontal lines are
shown in panels 2(b)-2(e), an arrow attached to each pulse
indicating its relative direction in the moving reference
frame of the anchor.
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FIG. 2. Experimental recording of accelerated soliton dynam-
ics. (a) Slow time vs fast time plot, optical power color-coded.
Color code chosen to create contrast among smaller bunches. The
two strong peaks near the edges are the condensed soliton phase
anchor repeated after one cavity roundtrip (76.5 ns). Trajectories
exhibit bi-directional accelerated motion relative to the anchor.
The red dashed lines mark the times of individual oscilloscope
traces displayed in panels (b)—(e) from bottom to top, with an
arrow on top of each pulse showing its relative direction of
motion.

The pulse trajectories depicted in Fig. 2(a) have the
following characteristics: (i) Soliton bunches propagate
either faster (left) or slower (right) than the anchor.
(i) Soliton bunches accelerate. (iii) The drift velocity
depends on the soliton-bunch power. (iv) When soliton
bunches merge, the relative velocity of distant pulses is
affected. For example, on the right side of Fig. 2(a), at the
time interval between the snapshots (b) and (c), we observe
the merging of soliton bunches. The resulting stronger
bunches change direction, merge with each other, and
finally merge back into the anchor. This cavity hence
exhibits SR dynamics that differ from those previously
reported [18-22], and we refer to it as a bidirectional SR.
The most likely enabling factors for observing this regime
experimentally are the low saturation power of the few-
atom thick graphene layer [42], compatible with a low
dissipative soliton energy scale, and the stronger effects of
noise and continuum that underlie the SR state, owing to
the few-percent contrast of the nonlinear transfer function
of the SA.

Our theory of pulse motion is based on the NMI
mechanism developed in Ref. [14], reminiscent of the
Casimir effect in quantum electrodynamics [15]. The pulse
interaction arises as a by-product of the pulse timing jitter
caused by the nonlinear overlap interaction between the
pulses and the random quasi-cw floor [11,43]. As shown in
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FIG. 3. Analysis of accelerated pulse dynamics. (a) Simulation
of pulse-bunch trajectories located to the right (blue curve) and
left (red curve) of the stagnation point. A schematic illustration of
NMI mechanism is overlaid, showing the pulse bunches in black
and the gain level in orange (not to scale). The stagnation point is
found where gain levels reach the gain value before the anchor
(horizontal dashed line). (b) Typical experimental traces of pulse
bunch trajectories, measured in the fast time scale, as a function
of slow time evolution [extracted at different initial times from
Fig. 2(a)]. The slow time is relative to each initial motion start
time (fluctuations in the trajectories at early slow times caused by
pulse collisions).

Fig. 3(a), gain is depleted by the pulses. The quasi-cw floor,
proportional to the gain, is thus inhomogeneous, its
intensity is sharply reduced after a pulse passage, recov-
ering gradually afterwards. Since the interaction with the
quasi-cw floor makes the pulses diffuse [44], the diffusion
strength proportional to its intensity, the pulse diffusion will
depend on the pulse position within the waveform, math-
ematically similar to a Brownian motion in an inhomo-
geneous environment, the bias translating into the drift
velocity of the pulses. Specifically, denoting the timing of
the nth pulse by 1, its diffusion constant by D, and the
slow time coordinate or propagation distance by z, then

ot,) 10D,
dz 201,

(1)

Where the brackets stand for noise averaging. The
diffusion constant D,, is proportional to the local intensity
of the quasi-cw, in turn determined by the local net gain
as [14],

1 1
Prltn) <w SRR =) @

where [ is the total small signal loss. Eqgs. (1) and (2) dictate
the relative motion of soliton bunches in relation to the
noise background expressed by the local gain. As shown
below, bunches drift in the direction of reduced noise
power. This is analogous to the Casimir effect, where
macroscopic objects experience a pull towards a region in
space where vacuum fluctuations are suppressed (noting

that here the noise does not consist of zero point
fluctuations).

The variations in g are small compared with the mean
gain g, but may induce large changes in the net loss. Since
the gain is depleted by the pulses, whose temporal width is
much smaller than any other relevant timescale, the
depletion is viewed as instantaneous — g(#;,) and g(7,})
denoting the gain coefficients before and after the nth pulse,
respectively. Between pulses, the gain recovers according to

dg  gu.—9
g 7 3
dt Irec ( )

where g, is the unsaturated gain and f,.. is the recovery
time; these parameters are determined by the pumping
regime. Since gain variations are much smaller than g, — g,
the recovery rate is very close to the constant (g, — )/ ;e
and the gain profile is a sawtooth-shaped function with
downward jumps at each pulse, and a constant-slope linear
rise between the pulses.

Figure 3 demonstrates the predictive power of the
dynamical system described by Eqs. (1)-(3), solved
numerically. Here, insight can be gained by following
the temporal evolution of the noise floor in presence of
pulse bunches of different energy. The relative pulse
velocity, determined by Eq. (1), becomes highly sensitive
to gain variation where the gain g comes close to the loss /,
which is where both D,, and its time derivative are greatest.
As a result, the energetic bunches propagate at a different
relative velocity with respect to smaller pulses in their
wake, where the noise background is strongly suppressed.
In the anchor reference frame, a small bunch following a
large one will appear to fall towards it. As the small pulse
comes closer to the anchor, it experiences even lower gain
levels, causing it to further accelerate. This acceleration is
clearly seen in the simulated pulse trajectory (red) in
Fig. 3(a).

The temporal evolution of the gain reveals another
important feature of the pulse dynamics: At the point
where the gain recovers to its value at the anchor, shown by
adotted line in Fig. 3(a), Eq. (2) dictates that the bunch drift
velocity is approximately equal to the anchor velocity.
Since beyond this point the bunch is faster than the anchor,
and before it the bunch is slower, the gain parity point is an
unstable stagnation point of the pulse flow, in agreement
with simulation results [blue trajectory in Fig. 3(a)]. Thus,
simulated trajectories agree well with the experimental
ones, presented in Fig. 3(b), depicting superimposed four
experimental single-pulse trajectories in the anchor refer-
ence frame. In agreement with the theory, each small bunch
approaches the anchor by either moving forward or back-
ward, depending on its initial position inside the cavity, the
domains of forward- and backward-motion separated by the
unstable stagnation point.
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FIG. 4. Complex many-pulse trajectories, displayed as color-
coded oscilloscope readout vs fast and slow times, comparing the
experiments [left panels (a),(c)] with simulations [right panels
(b),(d)]. Simulations are based on the NMI theory, assuming the
annihilation of a fixed fraction of bunch energy during collisions.
The anchor is positioned at the edges of the waveform. The
pulses are marked either at zero slow time or at the time of their
formation, with red or yellow points, respectively.

Figure 4 compares experiments with NMI simulations in
the presence of numerous pulse bunches. In the simulation,
the initial condition consists of an arbitrary number of pulse
bunches, each composed of an arbitrary number of solitons.
The experimental plots (a),(c) are characterized by abrupt
changes in the pulse direction as a response to pulse
merging events. For example, the pulses marked by red
dots in panel (a) merge and then drift rightwards until
reaching the anchor at the slow time marked as “z;”. At the
same instant, a second set of pulses, marked in yellow,
change their direction. This effect, too, is understood when
considering the noise profile, which changes as the energy
of the “red” pulse is added to the anchor: a more energetic
anchor shifts the position of the stagnation point to the
right. A pulse which, at z < z;, was at the right of the
stagnation point and hence a right mover, abruptly becomes
placed left of the stagnation point, and hence a left mover.
This process is reversed as the anchor loses energy over
time. All these major observed effects—pulse acceleration,
bidirectionality, and changes of direction—are explained
by the NMI model, and qualitatively well reproduced by the
numerical simulations.

In summary, we model dissipative soliton trajectories
under long-range many-body interactions. Such theory is
long sought, as pulses in the SR dynamical regime
sequentially interact through different and competing
forces, involving timescales spanning 12 orders of magni-
tude. This theory represents, to our knowledge, the only
example where solitons interact by suppression of fluctua-
tions, akin to the Casimir interaction. While a comprehen-
sive SR theory accounting for stochastic soliton formation

and annihilation is beyond the current scope, the quanti-
tative success of the NMI theory should impact future
research of soliton pattern formations in ultrafast lasers.
Ultimately, if such dynamics could be scaled down to
ultralow powers in miniature high-Q laser cavities, so as to
produce pulses weak enough to be sensitive to single
photon fluctuations, then the NMI could be used to
sense the quantum fluctuations of the cavity electromag-
netic field.
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