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We demonstrate the scale up of a symmetric three-path contrast interferometer to large momentum
separation. The observed phase stability at separation of 112 photon recoil momenta exceeds the
performance of earlier free-space interferometers. In addition to the symmetric interferometer geometry and
Bose-Einstein condensate source, the robust scalability of our approach relies on the suppression of
undesired diffraction phases through a careful choice of atom optics parameters. The interferometer phase
evolution is quadratic with number of recoils, reaching a rate as high as 7 × 107 rad=s. We discuss the
applicability of our method towards a new measurement of the fine-structure constant and a test of QED.
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The precision of atom interferometry [1] enables appli-
cations, such as inertial sensing [2–6], and tests of funda-
mental physics, such as the equivalence principle [7,8] and
quantum electrodynamics (QED) [9,10]. Light-pulse inter-
ferometers, central to these endeavors, use standing-wave
optical pulses as beam splitters and mirrors, imparting
momenta in units of photon momentum ℏk to the atoms.
Such interferometers gain sensitivity by increasing the
enclosed space-time area with momentum-boosting accel-
eration pulses [11,12]. Phase-stable interferometers with
large momentum separation are thus an overarching goal
in atom interferometry.
Path separations nℏk with n up to 102 have been

demonstrated [12]; however interferometer phase stability
[13] was not observed due to technical noise from mirror
vibrations. Vibration immunity and resultant phase stability
can be recovered by operating two simultaneous interfer-
ometers in a conjugate or dual geometry [12,14]. However,
the operation of such interferometers has been limited to
n ≤ 30 [12,15,16]. While n ¼ 80 has been reported in a
guided-atom interferometer [17], the confining potential
introduces additional systematic effects.
All of these earlier works involved interference between

two paths. Here we demonstrate large momentum separa-
tion in a three-path interferometer, an alternative geometry
featuring an inherent immunity to many systematic effects
[18,19]. We observe phase stability for very large momen-
tum separation, achieving 30% visibility at n ¼ 112. The
resulting interferometer phase grows quadratically with
momentum, reaching a rate as high as 7 × 107 rad=s.
Undesirable diffraction phases are theoretically and exper-
imentally analyzed and controlled by our choice of
atom-optics parameters. Our interferometer demonstrates
favorable scaling for a precision measurement of the fine-
structure constant α and test of QED.
Our contrast interferometer (CI), (Fig. 1) operates on a

Bose-Einstein condensate (BEC) atom source and consists of

four atom-optics elements: splitting pulse, mirror pulse,
acceleration pulses, and readout pulse. The splitting pulse
places each atom into an equal superposition of three z-axis
momentum states: j þ 2ℏki, j0ℏki, and j − 2ℏki, referred to
as paths 1, 2, and 3, respectively. Themirror pulse reverses the
momenta of paths 1 and 3. The acceleration pulses increase
the momentum separation of paths 1 and 3 to nℏk during two
sets of free evolution times T. After the final deceleration
sequence brings the outer paths back to j � 2ℏki, all three
paths overlap in space and form an atomic density grating
with spatial period π=k, whose amplitude varies in time [20]:
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By pulsing on a traveling “readout” laser beam and collecting
the Bragg reflection off this matter-wave grating, we obtain its
contrast as the characteristic CI signal:
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Here,CðtÞ is the signal envelope related to the coherenceof the
source and ϕiðtÞ are the phases accumulated by the different
paths. Relative to path 2, paths 1 and 3 accumulate phase from
their kinetic energies and thus SðtÞ oscillates at a frequency of
8ωrec, where ωrec ¼ ℏk2=2m is the recoil frequency andm is
the mass of the atom. Importantly, effects from mirror
vibrations on the optical standing wave phases cancel in this
expression. Distinct from earlier realizations [18,19], a dra-
matic enhancement of phase accumulation of 1

2
n2ωrecT is

achieved in this work using multiple acceleration pulses.
Our atom source consists of ytterbium (174Yb) BECs of

Nat ¼ 150 000 atoms prepared in a crossed-beam optical
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dipole trap operating at 532 nm. After condensate for-
mation, we decompress the trap to a mean frequency of
ω̄ ¼ 2π × 63 Hz. To reduce the density and atomic inter-
actions further, we allow 2 ms time of flight after trap turn-
off before beginning the interferometry sequence.
Our atom optics consist of diffraction beams near

the 1S0 → 3P1 (λg ¼ 556 nm¼ 2π=k, Γg ¼ 2π × 182 kHz)
intercombination transition and a readout beam near the
1S0 → 1P1 (λb ¼ 399 nm, Γb ¼ 2π × 28 MHz) transition,
both derived from our laser cooling sources. The two
diffraction beams are detuned from the atomic resonance
by Δg=Γg ≃þ3500 and counterpropagate horizontally to
form a standing wave. Each beam is derived from the first
diffraction order of a 200 MHz acousto-optic modulator
(AOM) driven by an Analog Devices AD9910 direct digital
synthesizer. Each AOM output is passed through a polari-
zation-maintaining single-mode fiber. The diffraction
beams have waists of 1.8 mm, allowing lattice depths up
to 50ℏωrec for the available power. We stabilized the
diffraction beam intensities by feeding back to the
AOMs, keeping fluctuations in the diffraction pulse peak
lattice depth to ≤2%.
The splitting pulse has a width of 7 μs, within the

Kapitza-Dirac regime [21]. The mirror pulse is a second-
order Bragg π pulse with Gaussian 1=e full width 54 μs and
peak lattice depth 14ℏωrec. Each acceleration pulse is a third-
order Bragg π pulse delivering 6ℏk of momentum, with
Gaussian 1=e full width 54 μs and peak lattice depth
26.6ℏωrec. We accelerate the outer paths sequentially as
shown in Figs. 1(a),1(b) with successive pulses separated by

130 μs. Although this acceleration scheme breaks the
symmetric form of the interferometer, the suppression of
systematic effects from the symmetry of the three-path
geometry [18,19] is largely retained if the time between
acceleration pulses for paths 1 and 3 is short, as in our case.
We use light at λb for the readout beam which Bragg reflects
at 44° from the λg=2 period matter-wave grating to form the
CI signal, eliminating noise associated with stray reflections
whenusingBraggbackscattering at λg as in earlierwork [19].
Figures 1(c)–1(f) show contrast readout signals for

various values of n, each of which is an average of
multiple experimental iterations (shots). The phase stabil-
ity of the interferometer is apparent in the high visibility of
these fringes even for the largest (n ¼ 112) momentum
splitting used in this work. To our knowledge, this is the
highest momentum splitting in any atom interferometer
that produces stable, visible fringes. We attribute this
capability to the vibration insensitivity of the CI and
the suppression of diffraction phases discussed below.
Note that these results are obtained without any active
vibration isolation. To extract fringe visibility, we fit these
signals with the expression CðtrÞcos2ð4ωrectr þΦÞ þ S0
using the currently accepted value of ωrec and a Gaussian
envelope CðtrÞ [22]. Here tr is the time from the start
of the readout pulse and S0 is a vertical offset. We
quantify the visibility of our signal [Fig. 2(a)] as
½ðMax −MinÞ=ðMaxþMinÞ� × 100%, where Max and
Min are determined by our fitted values for S0 and
CðtrÞ. The offset S0 is due to the 7% spontaneous
scattering probability from the readout pulse, which is

FIG. 1. (a),(b) Space-time trajectory (to scale) and atom optics sequence for the n ¼ 16 and n ¼ 100 contrast interferometer (CI) with
T ¼ 1 ms. The shaded regions indicate that some pulses (black shading) affect both moving paths, while others (orange and blue
shading) affect a single path. The CI signal is acquired by applying a traveling wave laser pulse (violet shading) and collecting the
Bragg-reflected optical signal on a photomultiplier tube (PMT). Readout signals (violet) with fits (dashed black) for various momentum
splittings n are shown in (c),(d) (20 shot averages), and (e),(f) (80 shot averages).
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detuned by Δb=Γb ¼ −50. Note that this definition refers
to the visibility of the fringe associated with light scattered
from the atomic grating, and not to the visibility of the
atomic grating itself, which is characterized by the ampli-
tude of the scattered light presented in Fig. 2(a).
We analyze single shots by extracting the amplitude and

phase (2Φ) of the Fourier component at 8ωrec. Figure 2(a)
shows how the amplitude varies with n. Our data are well
described by a simple model of imperfect acceleration
pulses. The fraction of atoms remaining in path 1 or 3
that contribute to the final CI signal is Aζ, where A is
the efficiency per ℏk of our acceleration pulses, and ζ ¼
½4ðn − 4Þ=2� is the total number of photon recoils from the
acceleration pulses only, for path 1 or 3. A fit to the
amplitude data using this model returns A ¼ 0.9845ð2Þ, or
91% per third-order Bragg pulse, consistent with a direct
measurement of our π-pulse efficiency from absorption
imaging of the atoms. This amplitude model, together with
the n-dependent signal offset from spontaneous scattering,
yields a visibility model that captures the main features of
our data (dashed blue line).
We characterize our interferometer’s phase stability

(important for precision measurements) as the standard
deviation δΦ of extracted single-shot phases [Fig. 2(b)].
Our observations are close to the expectations from photon

shot noise (orange bars), evaluated as
ffiffiffiffiffiffiffiffi

Nph
p

=ð ffiffiffi

2
p

NsigÞ,
where Nph is the average total number of detected photons
andNsig is the number contributing to the oscillatory part of
the signal only [23,24]. Since Nph ≪ Nat, the atom shot
noise limit is far lower.
For a free evolution time of 2T, we define the signal

phase at the start of the readout pulse to be the CI phase
Φð2TÞ ¼ 1

2
n2ωrecT þΦoffset. Here Φoffset contains a num-

ber of phase shifts that are common to interferometers of
different T, as well as contributions from systematic effects.
The evolution of Φ with T is shown in Fig. 3 for various n.
The fitted slopes are in good agreement with the expected
dΦ=dT ¼ 1

2
n2ωrec. We note that the interferometer phase at

n ¼ 112 corresponds to the phase difference between two
paths separated by 56ℏk [Eq. (2)].
The quadratic scaling of the CI phase with n is a distinct

benefit for precision measurements; however it comes at the
cost of a systematic effect fromdiffraction phases. This effect
stems frommomentum-dependent phase shifts during Bragg
diffraction and can be significant for different interferometer
geometries [19,25–27]. A critical gauge of theviability of the
CI scheme is the scaling of diffraction phasewithmomentum
separation. An important element for our favorable n scaling
was the selection of acceleration pulse parameters that
suppressed diffraction phase contributions to δΦ, in addition
to providing good atom optics efficiency.
The presence of an optical lattice modifies the atomic

dispersion relations, leading to momentum-dependent (and
therefore path-dependent) phase shifts which affect the CI
signal according to Eq. (2). We experimentally characterized
the diffraction phase effect for our acceleration and mirror

FIG. 2. (a) Normalized readout signal amplitude and visibility vs
n. The amplitude is based on the Fourier component at 8ωrec, and
visibility is extracted from sinusoidal fits to averaged data as shown
in Fig. 1. Signal visibility is calculated with (black triangles) and
without (blue squares) the diffraction phase correction. The solid
orange line is a fit to the observed amplitude and the dashed line is a
model curve (see text). (b) CI phase standard deviation vs n, with
(black diamonds) and without (blue circles) the diffraction phase
correction. The orange bars show the expected limit from photon
shot noise. The bar length, representing the estimation uncertainty,
is dominated by a 30% systematic uncertainty in the conversion of
the PMT signal to photon number.

FIG. 3. (a) CI phase Φ vs free evolution time 2T with linear fit,
for various n. (b) Fit slopes dΦ=dT vs n, demonstrating the
expected quadratic relationship dΦ=dT ¼ 1

2
n2ωrec (black curve).

(c) Typical fit residuals (n ¼ 16).
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pulse parameters by varying the peak pulse intensity around
the π-pulse condition (π point) and observing the variation of
the CI phase. As shown in Fig. 4, our observations agreewell
with a numerical model of the diffraction processes which is
equivalent to those described inRefs. [19,26]. The diffraction
phase from the splitting pulse is negligible and the diffraction
phases at the π points for the Bragg mirror and acceleration
pulses constitute a T-independent offset to the CI phase.
Thus, in standard interferometer operation we need only
consider the variations of the diffraction phase around the π
point from intensity fluctuations of our lattice. The black
curve in Fig. 4 implies that 2% intensity variations (our upper
bound) in themirror pulse contribute 70mrad to the CI phase
standard deviation. The first acceleration pulse contributes
about 25 mrad (blue curve), while for larger n the behavior
converges to the dotted orange curve. For the largestn ¼ 112
interferometer there is less than 200 mrad diffraction phase
fluctuations per shot, including the effects fromall the pulses.
Operation of the interferometerwith the chosen parameters is
crucial for its scalability. For instance, pulse widths 4 times
longer lead to order of magnitude greater diffraction phases,
which we verified both experimentally and theoretically.
The CI phase fluctuations can be improved by applying a

shot-by-shot diffraction phase correction based on the
correlation between the CI phase and the recorded dif-
fraction pulse amplitudes. The correction is significant,
reducing δΦ to <320 mrad for n up to 88 [Fig. 2(b)] and
bringing our observations into closer agreement with the
photon shot noise limit. We also observe a small improve-
ment in the visibilities of the corrected averaged data
[Fig. 2(a)].
We have considered the effects from atomic interactions

on our results. For our Thomas-Fermi condensate source
[28,29] the estimated phase fluctuations arising from the

<3% fluctuations in initial splitting asymmetry are far less
than those observed.
We now consider application of the large n CI technique

to a photon recoil and αmeasurement. The precision in ωrec
can be written as

δωrec

ωrec
¼ δΦ

Φ
¼ δΦ

1
2
n2ωrecΔT

ffiffiffiffiffi

M
p ; ð3Þ

where 2ΔT is the range of free evolution times over which
the slope of Φð2TÞ is measured and M is the number of
experimental shots. In our current CI setup, the free
evolution time is constrained by the atoms falling out of
the horizontally oriented diffraction beams, and 1

2
n2ωrecT is

optimized to 2.1 × 105 rad for n ¼ 76, and T ¼ 3 ms. This
represents an improvement of 2 orders of magnitude in the
total interferometer phase compared to our earlier CI
realization [19]. For these parameters, the maximum
separation of interfering states is 1.5 mm. The observed
δΦ ¼ 250 mrad at n ¼ 76 [Fig. 2(b)] then gives a precision
of 8.7 × 10−8 in ωrec in 200 shots.
The interferometer cycle time is dominated by BEC

production. While this is 10 s for this work, we have
demonstrated Yb BEC cycle times as low as 1.6 s in our
group [30]. Using 3 s as a reasonable benchmark for long-
term measurements, the above numbers scale to 1.1 × 10−8

inωrec in 10 h of integration time. We are initiating a new CI
configuration with vertically oriented diffraction beams
where the limitation on free evolution time is lifted and
2T ¼ 210 ms (keeping n ¼ 76) is possible in a 7 cm vertical
region. We have also demonstrated delta-kick cooling
[31,32] in our experiment which will help preserve the
interferometer signal quality for large T. The above scaling
then indicates a precision of 3.2 × 10−10 inωrec in 10 h [33].
The corresponding precision in α, which can be determined
by combining ωrec and measurements of other fundamental
constants [35] is a factor of 2 better. Together with potential
improvements in n and δΦ from better interferometer pulse
control, this approach holds promise for a 10−10 level
measurement of α and test of QED [9,10,36,37].
Even though the CI signal is insensitive to acceleration, it

is sensitive to its first derivative [34], and thus to gravity
gradients. Our techniques for large n interferometers should
therefore also positively impact other applications of atom
interferometry, including gravity gradiometry [3] and meas-
urement of the Newtonian gravitational constant [38,39].
In summary, we have developed a high-visibility phase-

stable atom interferometer with momentum splitting up to
112ℏk, exceeding the momentum separation achieved in
earlier phase-stable free-space interferometers. The robust
scalability arises from the inherent vibration insensitivity of
the interferometer geometry as well as diffraction phase
control. We demonstrated a quadratic growth of the
interferometer phase with momentum splitting and favor-
able scaling of the performance towards a precision
measurement of α. Finally, our results also represent an

FIG. 4. Diffraction phase shift vs peak lattice depth (pulse
width held fixed) for the second-order Bragg mirror pulse (black
circles) and the third-order acceleration pulse (blue diamonds)
from 2ℏk to 8ℏk. The dashed vertical lines indicate the peak
lattice depths at which the π-pulse condition is met in each case.
Overall phase offsets have been removed to zero the diffraction
phases at the π points. Black and blue solid lines are the
predictions from the corresponding numerical model. The dotted
orange line is the prediction of the model for the third-order
Bragg pulse at large n (see text).
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important advance in the use of alkaline-earth-like atoms
for precision atom interferometry, where their ground-state
magnetic field insensitivity and the presence of narrow
intercombination transitions can be exploited [19,40–46].
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