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Quantum gravity in a finite region of spacetime is conjectured to be dual to a conformal field theory
(CFT) deformed by the irrelevant operator TT̄. We test this conjecture with entanglement entropy, which is
sensitive to ultraviolet physics on the boundary, while also probing the bulk geometry. We find that the
entanglement entropy for an entangling surface consisting of two antipodal points on a sphere is finite and
precisely matches the Ryu-Takayanagi formula applied to a finite region consistent with the conjecture of
McGough et al.We also consider a one-parameter family of conical entropies, which are finite and verify a
conjecture due to Dong. Since ultraviolet divergences are local, we conclude that the TT̄ deformation
acts as an ultraviolet cutoff on the entanglement entropy. Our results support the conjecture that the
TT̄-deformed CFT is the holographic dual of a finite region of spacetime.
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The TT̄ deformation of two-dimensional conformal field
theories (CFTs) provides an exactly solvable model of
quantum field theory with an ultraviolet (UV) cutoff [1,2].
TT̄ is a composite operator satisfying the factorization
property [3]

hTT̄i ¼ 1

8
ðhTabihTabi − hTa

ai2Þ: ð1Þ

Any CFT can be deformed by this operator, defining a one-
parameter family of theories labeled by a deformation
parameter μ with dimensions of length squared. Here we
take μ to be positive. Equation (1) is reminiscent of the
factorization of multitrace operators into products of single-
trace operators in large-N conformal field theories. The
factorization property determines many properties of the
deformed theory, including the spectrum [1,2] for which μ
acts as an UV cutoff. We will work in the limit of large
central charge, under the assumption that hTabi can be
treated as a classical field, and Eq. (1) holds at all length
scales.
The factorization property [3] (1) determines the parti-

tion function of the TT̄-deformed theory on an arbitrary
curved background. The response of the partition function
to the change of background metric is given by the stress
tensor

δ logZ ¼ −
1

2

Z
d2x

ffiffiffi
g

p hTabiδgab: ð2Þ

The deformed theory is defined through the flow equation

hTa
ai ¼ −

c
24π

R −
μ

4
ðhTabihTabi − hTa

ai2Þ; ð3Þ

which reduces to the CFT trace anomaly in the limit μ → 0.
The flow equation together with stress tensor conservation

∇ahTabi ¼ 0 ð4Þ

defines a system of equations for hTabi that are in some
cases sufficient to determine it completely. In what follows,
we drop the angular brackets and simply use Tab to refer to
the expectation value.
McGough et al. [4] argued that, for holographic CFTs, the

TT̄ deformation corresponds to introducing a finite boundary
in the bulk acting as an infrared cutoff. This correspondence
can be most easily seen by identifying the momentum
conjugate to the metric πab ¼ ffiffiffi

g
p ½Tab − ð2=μÞgab�, under

which the flow equation and stress tensor conservation
become the Arnowitt-Deser-Misner [5] Hamiltonian con-
straint and momentum constraint, respectively [4,6],

8πGffiffiffi
g

p ðπabπab − ðπaaÞ2Þ þ
ffiffiffi
g

p
8πG

�
Rþ 2

l2

�
¼ 0; ð5Þ

∇aπ
ab ¼ 0: ð6Þ

This fixes the identification between field theory and gravity
quantities as

c ¼ 3l
2G

; μ ¼ 16πGl: ð7Þ

The former is the famous Brown-Henneaux central charge
[7], while the latter is the identification of μ proposed in [4].
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(In [4] themetric of theCFTwas related to the inducedmetric
of the bulk theory by a factor rc; here we set rc ¼ 1, which
corresponds tomeasuring bulk and boundary distances in the
same units.) This proposal passes a number of consistency
checks [8].
In this Letter, we consider entanglement entropy of

TT̄-deformed field theory. Entanglement entropy is a
natural probe of the field theory which is sensitive to the
UV induced by the TT̄ deformation. Moreover, it has a
well-known holographic dual given by the Ryu-Takayanagi
formula [9]. We will consider an entangling surface
consisting of two antipodal points on the sphere, which
gives the entanglement entropy of the de Sitter vacuum
state across the horizon [10]. We find that this entanglement
entropy is finite and matches the Ryu-Takayanagi formula
with a finite cutoff surface consistent with the proposal
of Ref. [4].
We further consider the conical entropy, a close relative

of the Rényi entropy [11–13], which carries more detailed
information about the spectrum of the reduced density
matrix. These are calculated for index n < 1, and they
verify a proposal due to Dong [14] relating the conical
entropy to the length of a brane anchored to the boundary.
Again, the TT̄ deformation renders the entropy UV finite
and corresponds to a finite infrared cutoff surface in the
bulk. This gives further confirmation of the conjecture
of Ref. [4].
To some extent these results could be anticipated;

having assumed the flow equation (3), its equivalence to
the Hamiltonian constraint (5) allows our results to be
expressed purely as a bulk gravity calculation by a change
of variables. In the gravitational setting, our results can be
seen as an explicit determination of the Rényi entropies and
a check on the methods of [13,14].
Sphere partition function and entanglement entropy.—

We first calculate the sphere partition function in the
TT̄-deformed CFT. We will see that this is sufficient to
calculate the entanglement entropy when the entangling
surface is two antipodal points on the sphere.
To find the sphere partition function, we consider the

metric ds2 ¼ r2½dθ2 þ sinðθÞ2dϕ2� and vary the radius r,

d
dr

logZ ¼ −
1

r

Z
d2x

ffiffiffi
g

p
Ta
a: ð8Þ

By symmetry, the stress tensor takes the form Tab ¼ αgab,
where α is determined by the flow equation (3),

α ¼ 2

μ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cμ

24πr2

r �
: ð9Þ

In solving the quadratic equation, we have chosen the
branch that gives the CFT trace anomaly in the limit μ → 0.
This yields a differential equation for the partition function
as a function of radius

d logZ
dr

¼ 16π

μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ cμ

24π

r
− r

�
: ð10Þ

This can be integrated with the help of the substitution
r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cμ=24π
p

sinhðxÞ, giving the sphere partition function

logZ ¼ c
3

�
xþ 1

2
ð1 − e−2xÞ

�
ð11Þ

¼c
3
sinh−1

0
@

ffiffiffiffiffiffiffiffi
24π

cμ

s
r

1
Aþ8π

μ

 
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cμ
24π

þr2
r

−r2
!
: ð12Þ

Note that we have chosen the boundary condition
logZ ¼ 0 at r ¼ 0; this would not have been possible in
a CFT, where the partition function continues to change as a
function of scale at arbitrarily short distances. Here we see
that the flow equation is consistent with a trivial theory in
the UV.
The Euclidean path integral on S2 corresponds to the de

Sitter vacuum. We will consider the entanglement entropy
of this state across an entangling surface consisting of two
antipodal points. This entropy can be obtained directly
from the sphere partition function as follows. (We thank
Aron Wall for teaching us this trick.) To calculate the
entanglement entropy by the replica trick, we consider the
n-sheeted cover of the sphere,

ds2 ¼ r2½dθ2 þ n2 sinðθÞ2dϕ2�: ð13Þ

The entropy is then obtained from the partition function as

S ¼
�
1 − n

d
dn

�
logZjn¼1: ð14Þ

In the absence of rotational symmetry, this formula requires
analytic continuation in n, but in the case of antipodal
points, we can continuously vary n.
Under a change of n, the partition function changes as

d logZ
dn

����
n¼1

¼ −
Z ffiffiffi

g
p

Tϕ
ϕ: ð15Þ

Since the stress tensor on the sphere is isotropic, Tϕ
ϕ ¼ 1

2
Ta
a.

From (8) we conclude that the entropy can be expressed in
terms of the sphere partition function as

S ¼
�
1 −

r
2

d
dr

�
logZ ¼ c

3
sinh−1

0
@

ffiffiffiffiffiffiffiffi
24π

cμ

s
r

1
A: ð16Þ

For r ≫ ffiffiffiffiffi
μc

p
we see that this formula reproduces the well-

known CFT result [15,16] with subleading corrections,
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S ¼ c
3
log

0
@

ffiffiffiffiffiffiffiffi
96π

cμ

s
r

1
Aþ c2μ

288πr2
þOðμ2Þ: ð17Þ

The corrections to the logarithmic term in the entanglement
entropy are polynomial in μ starting from order one. In the
UV limit r → 0 the entanglement entropy vanishes, indi-
cating that the theory flows to a trivial theory.
We can also compare this result with the holographic

proposal of [4]. The metric of three-dimensional Euclidean
anti-de Sitter spacetime (AdS3) in global coordinates is

ds2 ¼ l2(dρ2 þ sinhðρÞ2½dθ2 þ sinðθÞ2dϕ2�): ð18Þ
The sphere of radius r embeds into this geometry as a surface
ρ ¼ ρ0, where ρ0 is defined by r ¼ l sinhðρ0Þ. According to
the conjecture of [4], the TT̄-deformed theory is dual to
quantumgravity in the region ρ < ρ0. According to the Ryu-
Takayanagi formula [9], the holographic entanglement
entropy is given by L=ð4GÞ, where L is the length of a
minimal geodesic connecting the points of the entangling
surface. In the case of antipodal points, the geodesic passes
through the center and has length L ¼ 2lρ0. Thus, the Ryu-
Takayanagi formula yields

S ¼ L
4G

¼ l
2G

sinh−1
�
r
l

�
; ð19Þ

which agrees precisely with (16) with the identifications (7).
Conical entropy.—The entanglement entropy is just one

measure of entanglement. More information about the
spectrum of the reduced density matrix is encoded in the
conical entropy

S̃n ¼
�
1 − n

d
dn

�
logZn; ð20Þ

which reduces to the entanglement entropy when n ¼ 1.
The conical entropy S̃n is related to the Rényi entropy Sn as

S̃n ¼ n2∂n

�
n − 1

n
Sn

�
: ð21Þ

The entropy as a function of r is displayed in Fig. 1. In the
case of two antipodal points on the sphere, S̃n is the de
Sitter entropy at a temperature ∼1=n. By varying n we
probe the density of states at different energy scales.
To calculate S̃n via the replica trick, we consider

the partition function of the theory on the conical sphere
(13). We will assume rotational symmetry in ϕ, so that
we can parametrize the stress tensor in terms of two
nonzero components TθθðθÞ and TϕϕðθÞ. The problem
simplifies if we consider the variables u ¼ ðμ=2ÞTθ

θ − 1

and v ¼ ðμ=2ÞTϕ
ϕ − 1; in terms of these variables, stress

tensor conservation and the flow equation are

du
dθ

¼ cotðθÞðv − uÞ; uv ¼ 1þ cμ
24πr2

: ð22Þ

This has the solution

u2 ¼ 1þ cμ
24πr2

þ cn
sinðθÞ2 ; ð23Þ

where cn is independent of θ. The value of cn is determined
by the coupling of the theory to the conical singularity at
θ ¼ 0, π.
Boundary conditions.—We will define the theory on a

surface with a conical singularity via a limiting procedure
similar to Ref. [17]. We first define a family of smoothed
replica geometries in which a small neighborhood of the
conical singularity is replaced by a smooth “cap.”Wewill take
this cap to be a portion of maximally symmetric space; for
n < 1 this is a sphere, and for n > 1 it is a hyperbolic space.
Near the conical singularity, the geometry is approx-

imately a flat cone ds2 ¼ dτ2 þ τ2n2dϕ2, from which we
cut out the region τ < ϵ. For n > 1 we attach this to a cap
which is the region σ < σc of the hyperbolic space with
metric ds2 ¼ l2

c½dσ2 þ sinhðσÞ2dϕ2�, which has constant
negative curvature R ¼ −2=l2

c. Matching the intrinsic and
extrinsic geometry of the circle determines

lc ¼
ϵnffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p ; σc ¼ cosh−1ðnÞ: ð24Þ

The nonsingular solution on the cap takes the form
Tab ¼ ð2=μÞðuþ 1Þ where

u2 ¼ 1þ cμ
24πϵ2

�
1

n2
− 1

�
: ð25Þ

However, (25) has no real solutions for small ϵ, which
prevents us from taking the limit ϵ → 0. (In the CFT limit,
this issue does not arise, because we take μ → 0 prior to
taking ϵ → 0.) In terms of bulk variables, there are no
solutions when lc < l: this corresponds to the fact that
we cannot embed a hypersurface with more negative curva-
ture than the ambient space without breaking rotational
symmetry.
In the spherically symmetric case, we can instead

analytically continue from n < 1; a similar strategy has
been employed for calculating entanglement in string
theory [18–23]. For n < 1, we can replace a neighborhood
of the conical singularity with a spherical cap consisting of
the region θ < θc of the sphere with radius rc,

ds2 ¼ r2c½dθ2 þ sinðθÞ2dϕ2�: ð26Þ

Matching the length and extrinsic curvature determines

rc ¼
ϵnffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2

p ; θc ¼ cos−1ðnÞ: ð27Þ

The equation for the stress tensor is given by (25) just as in
the hyperbolic case, except that for n < 1 it always has real
solutions.
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We can now use this solution to determine the constant in
(23). Stress tensor conservation implies that u should be
continuous, which fixes the singular part of u,

u2 ¼ 1þ cμ
24πr2

þ cμ
24πr2 sinðθÞ2

�
1

n2
− 1

�
: ð28Þ

This equation determines the stress tensor

Tθ
θ ¼

2

μ

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cμ

24πr2
þ cμ
24πr2

�
1

n2
− 1

�
1

sinðθÞ2
s 1

A;

Tϕ
ϕ ¼ 2

μ

0
@1 −

1þ cμ
24πr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cμ
24πr2 þ cμ

24πr2 ð 1n2 − 1Þ 1
sinðθÞ2

q
1
A:

The sign of u in (28) has been chosen so that the CFT limit
μ → 0 is finite. In this limit, the stress tensor agrees with the
result obtained from the Schwarzian transformation law of
the stress tensor [15].
Conical entropy.—Having found an appropriate boun-

dary condition for the stress tensor, we can now proceed to
calculate the entropy S̃n for n < 1. To find the partition
function at fixed n, we vary the radius to obtain

d logZ
dr

¼ −2πnr
Z

dθ sinðθÞðTθ
θ þ Tϕ

ϕÞ ð29Þ

¼ 4πn
μ

Z
dθ sinðθÞ

�
2r2 þ cμ

24π þ α2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ α2

p − r

�
; ð30Þ

where we have defined

α2 ¼ cμ
24π

�
1þ

�
1

n2
− 1

�
1

sinðθÞ2
�
: ð31Þ

This can be integrated in r to obtain

logZ¼ n
4Gl

Z
dθsinðθÞ

�
l2sinh−1

�
r
α

�
þr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þr2

p
−r2

�
:

ð32Þ

For n ¼ 1, this reduces to (11).
From (32) we obtain the entropy

S̃n ¼ −n2
d
dn

�
logZ
n

�
ð33Þ

¼ rc
6n

Z
dθ

1

sinðθÞ
�
1 − cμ

24πα2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ r2

p
�

ð34Þ

¼ c
3

ð1 − n2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cμ

24πr2 þ n2
q Π

�
n2
���� r2 þ cμ

24π

r2 þ cμ
24πn2

�
: ð35Þ

Π is the complete elliptic integral of the third kind,

ΠðηjmÞ ≔
Z

π=2

0

dθ

½1 − η sinðθÞ2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m sinðθÞ2

p : ð36Þ

This function has a branch cut for n ≥ 1, corresponding to a
pole in the integral (36). However, we can take the principal
value of this integral, which is real for all n > 0. This
function is displayed in Fig. 2.
The limit n → 0 gives the logarithm of the rank of the

reduced density matrix

S̃0 ¼
ffiffiffiffiffiffiffiffi
2πc
3μ

s
πr; ð37Þ

which scales with the length πr of the boundary. This is
suggestive of a lattice theory in which an interval of length
L has a Hilbert space of dimension exp ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πc=3μ
p

LÞ.
Comparison with holography.—We now compare our

result (35) with the prediction from holography. According
to the proposal of Ref. [14], S̃n is given by L=4G, where L
is the length of a cosmic string whose tension induces an
angle 2π=n in the bulk. By rescaling ϕ, this is equivalent to
finding the length of a geodesic in a smooth geometry with

FIG. 1. At fixed n, the entropy S̃n is a smoothly increasing
function of r.

FIG. 2. At fixed r, S̃n is a decreasing function of n, with a kink
at n ¼ 1.
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induced boundary metric given by (13). Finding this
solution is equivalent to finding an embedding of the
metric (13) into Euclidean AdS3.
This embedding problem is most easily solved in the

coordinates

ds2 ¼ l2½dφ2 þ e−2φðdρ2 þ ρ2dϕ2Þ�: ð38Þ

We will assume the embedding preserves rotational sym-
metry, so that the ϕ coordinate on the boundary is the same
as the ϕ coordinate of the bulk. The embedding is then
defined by two functions φðθÞ and ρðθÞ. Demanding that
the embedding be isometric leads to the equations

ρ¼ eφ
r
l
nsinðθÞ; r2

l2
¼
�
dφ
dθ

�
2

þe−2φ
�
dρ
dθ

�
2

: ð39Þ

This can be rewritten as a single differential equation for φ,

r2

l2
¼
�
dφ
dθ

�
2

þn2r2

l2

��
dφ
dθ

�
sinðθÞþ cosðθÞ

�
2

; ð40Þ

which can be solved algebraically for dφ=dθ. The resulting
embedding in global coordinates is shown in Fig. 3.
The length of the geodesic connecting the point θ ¼ 0

and θ ¼ π in the metric (38) is given by

L ¼ l½φðπÞ − φð0Þ� ¼ l
Z

π

0

dθ
dφ
dθ

: ð41Þ

To find the total entropy, we integrate dφ=dθ

L
4G

¼ r
2G

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2n2

p
�
1þ r2

r2
KðmÞ − 1

r2
ΠðηjmÞ

�
; ð42Þ

where KðmÞ ¼ Πð0jmÞ is the complete elliptic integral of
the first kind and

m ¼ n2ð1þ r2Þ
1þ n2r2

; η ¼ r2n2

1þ r2n2
: ð43Þ

Using an identity of elliptic integrals [ðm−ηÞΠðηjmÞ þ
ðm−η0ÞΠðη0jmÞ¼mKðmÞ where ð1 − ηÞð1 − η0Þ ¼ 1 −m
[24] [Eq. 19.7.9]], this agrees with our expression (35) for
the entropy, with the identification of μ and c given in (7).
Discussion.—We have carried out a calculation of

entanglement entropy for an entangling surface consisting
of two antipodal points on the sphere. Our calculation
verifies the conjecture of Ref. [4] that the theory is dual to
gravity in a finite region. The entanglement entropy is UV
finite and is given by the Ryu-Takayanagi formula. Since
UV divergences are local, this indicates that the entangle-
ment entropy is finite for arbitrary entangling surfaces.
So far we have only considered the simplest case of two

antipodal points, but to further test the correspondence, one
should consider nonantipodal points, as well as multiple
intervals. Such generalizations do not have rotational
symmetry about the entangling surface, and so the method
of continuation from n < 1 does not apply. Instead, one
would have to find the appropriate solutions to Eqs. (3) and
(4) for boundary conditions with n > 1. Our analysis shows
that these solutions must either be complex or break the
replica symmetry.
The conical entropy S̃n encodes the full spectrum of

the reduced density matrix. The entanglement spectrum is
given by the inverse Laplace transform of the partition
function Z, which can be found by integrating (20). In CFT,
the n dependence of Z is universal, leading to a universal
entanglement spectrum [25]. Our result (35) has a highly
nontrivial n dependence compared to the CFT result
S̃n ∼ 1=n, suggesting a modification of the entanglement
spectrum. In particular, we would like to understand the
significance of the branch cut in S̃n and whether the
entanglement spectrum, like the spectrum on the cylinder,
has imaginary eigenvalues.
The fact that the entropy vanishes as r → 0 indicates that

the theory is trivial in the UV. This flow from a trivial
theory in the UV to a CFT in the infrared is reminiscent of
the continuous multiscale entanglement renormalization
ansatz (cMERA) [26,27]. It would be interesting to see if
the flow induced by TT̄ can be viewed as locally building
up entanglement as in cMERA.
The relation between the flow equation and the

Hamiltonian constraint suggests that the natural generali-
zation of TT̄ to higher dimensions is proportional to
½TabTab − ðTa

aÞ2�. This generalization has been considered
in the case of a flat boundary [28,29], but a further

FIG. 3. Embedded surfaces with r ¼ l ¼ 1 in Euclidean AdS3.
For this graph we have used Poincaré disk coordinates in which
the metric is ds2 ¼ 4dx⃗2=ð1 − x⃗2Þ2 with the third coordinate
suppressed. The anti–de Sitter boundary is the outer circle. At
n ¼ 1, the embedding is a circle. As n is decreased the
embeddings have an increasingly elongated “football” shape.
At n ¼ 0, the embedding degenerates to a line.
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generalization to curved boundaries would be required to
study the entanglement entropy using the methods
described here.
The TT̄ deformation can be viewed as a result of

dynamical gravity in two dimensions [30]. In particular,
Dubovsky et. al. in [31,32] have shown that this deformation
can be defined through coupling the CFT to Jackiw-
Teitelboim gravity. In a similar vein, Cardy [33] defines
this deformation perturbatively through a path integral
prescription involving integrating over Gaussian metric
fluctuations. This is also consistent with the idea that putting
the CFT in the bulk leads to a finite induced gravitational
constant on the boundary [34–36], which leads to a finite
entanglement entropy. Similar ideas in which the entropy is
regulated using an irrelevant deformation appear in
Refs. [37,38]. To study the entanglement entropy from this
perspective, one must face all the difficulties of defining
entanglement entropy in a theory with dynamical gravity.
We hope that our results can shed some light on how gravity
acts as an UV cutoff for the entanglement entropy.
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