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It is shown that the conserved charges on the event horizon and the Cauchy horizon associated with
scalar perturbations on extremal black holes are externally measurable from null infinity. This suggests that
these charges have the potential to serve as an observational signature. The proof of this result is based on
obtaining precise late-time asymptotics for the radiation field of outgoing perturbations.
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Introduction.—Extremal black holes play a fundamental
role in general relativity, high energy physics, and
astronomy. It has been reported [1] that 70% of stellar
black holes (such as Cygnus X-1 [2] and GRS 1915þ 105
[3]) are near extremal, suggesting that near-extremal black
holes are ubiquitous in the Universe. It has also been argued
[4] that many supermassive black holes (such as the ones in
the center of MCG–06-30-15 [5] and NGC 3783 [6]) are
near extremal. The spins of the astrophysical black holes in
all these works are below the widely predicted upper bound
a ≈ 0.998M, which is called the Thorne limit [7]. Note that
more recent works suggest that it may be possible to go
beyond the Thorne limit in the astrophysical setting [8].
Identifying observational signatures that indicate the pres-
ence of black holes that are sufficiently close to extremality
may be fruitful for investigating whether astrophysical
black holes with spins beyond the Thorne limit exist; see
for example [9]. Extremal black holes also have interesting
theoretical properties. For example, they saturate geometric
inequalities for the total mass, angular momentum and
charge [10–12]. Moreover, they have zero temperature and
hence they play an important role in the study of Hawking
radiation [13] and in string theory [14]. Their near-horizon
limits yield new solutions to the Einstein equations with
conformally invariant properties classified in [15–17].
Applications in quantum gravity have been obtained in
[18–20] and gravitational and electromagnetic signatures of
the near-horizon geometry have been presented in [9,21].
An important aspect of extremal black holes is that they

exhibit intriguing dynamical properties. Perturbations of
various types suffer from a “horizon instability” [22–26]
according to which derivatives transversal to the event
horizon of dynamical quantities grow asymptotically in
time along the event horizon. The source of this instability
is the existence of a charge (i.e., a surface integral)H which
is conserved along the horizon. We remark that, under the
presence of superradiance, a sequence of zero-damped
quasinormal modes has been found [27,28], leading to an

amplified version of the horizon instability [29] on such
backgrounds. For another type of gravitational instability,
we refer to [30].
In this Letter, we address the no-hair hypothesis in the case

of extremal black holes. The no-hair hypothesis postulates
that the only externally observable classical parameters of
black hole spacetimes are the mass, electric charge, and
angular momentum; all other dynamical information (known
as “hair”) is “lost” behind the event horizon rendering it
permanently inaccessible to external observers. The unique-
ness theorems (see, e.g., [31]) and stability theorems (see,
e.g., [32]) provide a first confirmation of the no-hair
hypothesis for subextremal black holes. In the extremal case,
however, the aforementioned conserved charge H on the
event horizon may be viewed as another classical parameter
of the black hole. On the other hand, all natural quantities
(e.g., translation-invariant derivatives of all orders) decay in
time away from thehorizon. For this reason,H canbe thought
of as “horizon hair” for the extremal black hole [33].
An open problem discussed in [26,34] is the measure-

ment of the horizon hair H by far-away observers who
receive radiation from the near-horizon region. Such
observers live in the spacetime region where the distance
r from the black hole is large and comparable in size to t,
the standard time coordinate. This region is modelled by
null infinity. In this Letter, we show that the horizon hair H
of scalar perturbations on extremal Reissner-Nordström
(ERN) is measurable from null infinity, providing thus a
resolution to the above open problem (see “Measurements
at null infinity” section). This result has not been seen
before in the literature and appears here for the first time.
Previous works [26,35] (see “Asymptotics for ERN”
section for a review and more details) showed that the
horizon hair can be read off at constant distances r or
distances r that are much smaller than t, but they did not
address the measurement of H from null infinity.
Our result suggests that (1) extremal black holes admit

classical externally measurable hair and (2) the horizon
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instability could potentially serve as an observational
signature. Another implication is that scalar perturbations
also admit a conserved charge inside the black hole, on the
Cauchy (inner) horizon, whose value is equal to that of the
event horizon hair H. This directly implies that the con-
served charge on the Cauchy horizon is also measurable
from null infinity. Hence, our result provides a new
mechanism that can be used to read off information at the
event horizon and at the Cauchy horizon from null infinity.
We further note that our mathematically rigorous argument
uncovers a new connection with soft hair (see also the
discussion in the “Review of subextremal RN” section).
The horizon hair H½ψ � of ERN.—We next briefly recall

the horizon instability of extremal black holes. We will
consider scalar perturbations ψ solving the wave equation
□gψ ¼ 0 where g is the ERN metric which in ingoing EF
coordinates ðv; r; θ;φÞ takes the form

g ¼ −Ddv2 þ 2dvdrþ r2ðdθ2 þ sin2θdφ2Þ;

where D ¼ ½1 − ðM=rÞ�2. The event horizon corresponds
to Hþ ¼ fr ¼ Mg. The vector field T ¼ ∂v is stationary
and normal to Hþ, whereas ∂r is translation invariant
ð½∂r; T� ¼ 0Þ and transversal toHþ. Let Σ0 be a spherically
symmetric Cauchy hypersurface that crosses the event
horizon and terminates at null infinity (for example, we
can take Σ0 to be fv ¼ 0g for r ≤ 2M and fu ¼ 0g for
r ≥ 2M, where u, v are the standard double null coordi-
nates) and let Στ ¼ FτðΣ0Þ where Fτ is the flow of the
vector field T. See Fig. 1 for an illustration. We denote by
∂ρ the radial vector field that is tangential to Στ and satisfies
∂ρr ¼ 1. Let Sτ ¼ Hþ ∩ Στ. Then, the following surface
integrals

H½ψ � ≔ −
M2

4π

Z
Sτ

∂rðrψÞdΩ ð1Þ

are independent of τ, and hence are conserved on Hþ for
all solutions ψ to the wave equation on ERN. Here
dΩ ¼ sin θdθdφ. We will refer to H½ψ � as the horizon
hair of ψ . In fact, there exists an infinite number of
analogous conserved charges Hl½ψ � for each angular
momentum l appearing in the spherical harmonic decom-
position of ψ [24], with H½ψ � ¼ H0½ψ �.
We next consider outgoing perturbations which arise

from compactly supported and horizon penetrating (H ≠ 0)
initial data. It turns out that the following instability results
on Hþ [23,24] are as follows: (1) nondecay: ∂rψ jHþ ∼
−ð1=MÞH½ψ � as τ → ∞, and (2) blowup: ∂r∂rψ jHþ ∼
ð1=M3ÞH½ψ �τ as τ → ∞. More generally ∂k

rψ jHþ ∼
ckH½ψ �τk−1 where ck ¼ ð−1Þkð1=M3Þfðk!Þ=½ð2M2Þk−1�g
for k ≥ 1. The quantity H can be given a physical
interpretation by considering the energy density measured
by incoming observers at Hþ: Trr½ψ � ∼M−6H2½ψ �, where
T is the energy-momentum tensor, and hence does not

decay along Hþ. On the other hand, all physically relevant
quantities decay in time away from the horizon. Murata-
Reall-Tanahashi’s numerical simulations [33] of the evo-
lution of the Einstein-Maxwell-scalar field system for
perturbations of ERN suggest that the horizon instability
persists in the fully nonlinear setting. This instability is also
relevant for near-extremal black holes where it is expected
to be a transient phenomenon, see for example [33].
For other extensions of this instability we refer to
[22–26,29,34–53].
One can also define a conserved charge for scalar

perturbations on the Cauchy horizon CHþ in the black
hole interior of ERN (conserved charges can be defined on
any hypersurface with vanishing surface gravity [25,54]):

H½ψ � ≔ −
M2

4π

Z
Sτ

∂rðrψÞdΩ; ð2Þ

where Sτ ¼ fu ¼ τg ∩ CHþ and ∂r is taken with respect to
the outgoing EF coordinates ðu; r; θ;φÞ in the interior
region. In contrast to the subextremal case, the spherical
mean of outgoing perturbations is continuously differ-
entiable at the Cauchy horizon [33,53] and hence H½ψ �
is well defined. An important corollary of the precise late-
time asymptotics (see “Late-time asymptotics” section) is
the relation

H½ψ � ¼ H½ψ � ð3Þ

for all outgoing perturbations ψ .
Measurements at null infinity.—We define the following

expression involving the radiation field rψ jIþ of scalar
perurbations ψ on any (subextremal or extremal) RN
spacetime:

s½ψ � ≔ 1

4M
lim
τ→∞

τ2ðrψÞjIþ þ 1

8π

Z
Iþ∩fτ≥0g

rψ jIþdΩdτ: ð4Þ

In order to compute s½ψ �, it actually suffices to know the
radiation field for large times τ ≥ τlate (for arbitrarily large
τlate). Indeed, the second term on the right hand side of (5)
is equal to

−
1

2M

Z
Iþ∩fτ¼τlateg

r3∂ρðrψÞdΩþ 1

8π

Z
Iþ∩fτ≥τlateg

rψdΩdτ:

FIG. 1. A Penrose diagrammatic representation of the space-
time regions of interest. The conserved charge on the Cauchy
horizon is equal to the horizon hair H½ψ � on the event horizon.
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We obtain the following identity on subextremal and
extremal RN:

s½ψ � ¼ H½ψ � in extremal RN; ð5Þ

s½ψ � ¼ 0 in subextremal RN; ð6Þ

where in (5) ψ is an outgoing scalar perturbation on ERN
and in (6) ψ is an initially compactly supported scalar
perturbation on subextremal RN. Identity (5) appears here
for the first time and it shows that the horizon hair H (and
consequently, the horizon instability) is measurable purely
from null infinity. A sketch of the derivation of (5) is given
in section titled “Sketch of the proof.” Furthermore, in view
of identity (6) (discussed further in the Review of sub-
extremal RN section below) and the fact that H½ψ � ≠ 0, the
expression s½ψ � provides an observational signature of
extremal black holes. One could also expect s½ψ � to be
useful in a transient sense to provide an observational
signature for near-extremal black holes. The remaining
conserved charges Hl could, in principle, be measured at
null infinity in an analogous fashion. Another consequence
of (5), combined with (3), is that the conserved chargeH on
the Cauchy horizon can be computed from null infinity. We
further obtain the following identity on hypersurfaces of
constant area radius r ¼ R > M in the strong field region
as shown here:

H½ψ � ¼ R −M
4M

lim
τ→∞

τ2ψ jr¼R; ð7Þ

confirming the numerical predictions of [26] and the
heuristic analysis of [34,35,43].
Late-time asymptotics.—Review of subextremal RN:

Since higher angular modes ψ≥1 ¼ ψ − ½1=ð4πÞ� RS2 ψdΩ
decay faster than the spherical mean ½1=ð4πÞ� RS2 ψdΩ, it
suffices to project to the spherical mean (and hence,
equivalently, it suffices to consider spherically symmetric
perturbations). For initial data extending to Iþ on sub-
extremal RN, the unique obstruction to inverting T is the
nonvanishing of the Newman-Penrose constant I½ψ �, which
is a conserved charge along null infinity. This is related to
the identity I½Tψ̄ � ¼ 0 for all regular solutions ψ̄ to the
wave equation. For compactly supported initial data (sat-
isfying I½ψ � ¼ 0), we can construct the time integral ψ̄ of ψ ,
which satisfies Tψ̄ ¼ ψ and has a finite Newman-Penrose
constant I½ψ̄ �. We denote that Ið1Þ½ψ � ¼ I½ψ̄ �. If follows that
the unique obstruction to inverting the operator T2 is the
nonvanishing of Ið1Þ½ψ �. The relevance of Ið1Þ½ψ � became

apparent in [55] where the precise late-time asymptotics
were obtained for compactly supported initial data, see
Table I. The following expression of Ið1Þ½ψ �was obtained in
terms of compactly supported initial data on Σ0 in [56]:

Ið1Þ½ψ � ¼ M
4π

Z
Σ0∩Hþ

ψ þ M
4π

Z
Σ0

∇ψ · nΣ0
; ð8Þ

where the integrals are considered with respect to the
induced volume form. It turns out that Ið1Þ½ψ � can be
computed from null infinity:

Ið1Þ½ψ � ¼ M
4π

Z
Iþ∩fτ≥0g

rψ jIþdΩdτ: ð9Þ

The integral of the radiation field along Iþ has appeared
before in the work of Luk-Oh [57] on strong cosmic
censorship. It is clear from Table I and identity (9) that
(6) holds for perturbations on subextremal RN. Note also
that the late-time asymptotics along, say, the event horizon
depend solely on the integral of the radiation field along
null infinity, confirming previous heuristic work predicting
dominance of the weak field dynamics in the late-time
evolution.
The existence of Ið1Þ½ψ � yields a conservation law which

can be recast into an identity between the integral of rψ
along Iþ and an analogous integral along I−, revealing a
tantalizing connection with the presence of a soft electric
hair [58–61]. Indeed, one may formally derive the null
infinity conservation law for rψ and the conservation of
charges associated to soft electric hair for a 2-form F
satisfying the Maxwell equations with a source j, by
integrating the following 4-form equations: d ⋆ dψ ¼ 0
and ðd ⋆ F þ 4π ⋆ jÞ ∧ dϵ ¼ 0, respectively, in suitable
spacetime regions and applying Stokes’s theorem. Here ϵ
denotes an arbitrary smooth function that only depends on
the angular coordinates.
Asymptotics for ERN: In Table II we distinguish three

classes of perturbations on ERN: for outgoing and ingoing

TABLE I. Leading order terms in the time asymptotics on subextremal RN.

ψ jHþ ψ jr¼R rψ jIþ

8Ið1Þ½ψ � · ð1=τ3Þ 8Ið1Þ½ψ � · ð1=τ3Þ −2Ið1Þ½ψ � · τ−2 − 8MIð1Þ½ψ � log τ · τ−3

TABLE II. Types of initial data. Here H denotes the conserved
charge on Hþ and I denotes the Newman-Penrose constant on
Iþ.

Perturbations H I

outgoing ≠ 0 ¼ 0
static moment ≠ 0 ≠ 0
ingoing ¼ 0 ¼ 0
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perturbations (with compactly supported initial data) we
define the constant Ið1Þ as in (8) [or, equivalently, in (9)].
For ingoing perturbations, we also define

Hð1Þ½ψ � ≔ M2

4π

Z
Hþ

ψ jHþdΩdτ: ð10Þ

We refer to Hð1Þ½ψ � as the time-inverted horizon charge. A
physical interpretation of Hð1Þ½ψ � can be given in terms
of the dual scalar field ψ̃ of ψ defined by
ψ̃ ¼ ½ðMÞ=ðr −MÞ�ψ∘Φ, where Φ denotes the Couch-
Torrence conformal inversion. It can be easily seen that
(1) the duality is self-inverse, (2) ψ solves the wave
equation if and only if ψ̃ solves the wave equation, and
(3) H½ψ � ¼ I½ψ̃ �. The latter relation was obtained inde-
pendently in [26,42]. It follows that Hð1Þ½ψ � ≔ Ið1Þ½ψ̃ �.
Moreover, in view of (8) applied to ψ̃ , one may obtain
an expression forHð1Þ in terms of the initial data on Σ0. The
precise late-time asympotics along the event horizon are
presented in Table III. We present in Table IV below the
precise late-time asymptotics away from the horizon.
Sketch of the proof.—In this section we present a

summary of the main ideas involved in deriving the late-
time asymptotics for outgoing spherically symmetric per-
turbations on ERN. The full details will be presented in the
upcoming paper [62].
Step 1. We obtain the asymptotics for ψ and Tψ on the

event horizon and actually in the spacetime region to the
left of the hypersurface γH ¼ fr ¼ M þ ταg for some

3=4 < α < 1 (see Fig. 2). Indeed, we can estimate
∂uðrψÞ ∼ 2Hu−2 to the left of γH which after integration
from γH yields asymptotics for rψ to the left of γH. Here ∂u
is taken with respect to the standard EF double null
coordinates ðu; vÞ.
Step 2. We derive asymptotics and estimates for the

derivative ∂ρψ that is tangential to Στ as follows: integrat-
ing the wave equation along Στ from the horizon r ¼ M to
some r > M, we obtain the following:

Dr2∂ρψðr; τÞ ¼ 2M2TψjHþðτÞ þ r2Tψðr; τÞ

þ
Z

r

M
Oðr0ÞTψ þOðr0ÞT2ψdr0:

The bold horizon term is the leading one:
2M2TψjHþ ∼ −4MHτ−2. We conclude that for any r > M:

j∂ρψðr; τÞ þ 4MHD−1r−2τ−2j
≤ Cτ−

5
2
þϵD−3

2r−
1
2 þ CD−1r−2τ−2−ϵ: ð11Þ

Step 3. We next obtain the late-time asymptotics for rψ
on γI ¼ fr ¼ ταg. We use the following splitting identity:

rψ jγI ¼ r∂ρðrψÞjγI|fflfflfflfflfflffl{zfflfflfflfflfflffl}
contribution from
the right side of γI

− r2∂ρψ jγI|fflfflfflfflffl{zfflfflfflfflffl}
contribution from
the left side of γI

: ð12Þ

We will show that the first (resp. the second) term on the
right hand side of (12) can be estimated using properties of
the right (resp. left) side of γI . We introduce a new
technique, which we call the singular time inversion. We
construct the time integral ψ ð1Þ of ψ which solves the wave
equation □gψ

ð1Þ ¼ 0 and satisfies Tψ ð1Þ ¼ ψ . Since
H½ψ � ≠ 0 we have that ψ ð1Þ is singular at the horizon; in
fact, ðr −MÞ∂ρψ

ð1Þ ¼ −ð2=MÞH½ψ � close to the event
horizon. On the other hand, ψ ð1Þ is smooth away from
the event horizon and has a well-defined Newman-Penrose
constant Ið1Þ ¼ I½ψ ð1Þ� < ∞. It can be shown that jrψ ð1Þj ≲
τ−1=2þϵ as τ → ∞ to the right of γI . The boundedness of
Ið1Þ yields ∂ρðrψ ð1ÞÞjγI ∼ Ið1Þv−2 ∼ Ið1Þτ−2 since v ∼ τ and

r ∼ τα along γI . Hence, we obtain ∂ρðrψÞjγI ∼ Ið1Þτ−3 and
hence r∂ρðrψÞjγI ∼ rτ−3 ∼ τ−3þα along γI . We conclude
that this term does not contribute to the asymptotics of

FIG. 2. A labeling of the spacetime regions indicating the order
in which the late-time asymptotics of ψ are derived. We see that a
delicate global study is needed in order to derive the asymptotics
on null infinity.

TABLE IV. Asymptotics away from the event horizon on ERN
and specifically on r ¼ R > M and on null infinity Iþ. The bold
terms are new and appear here for the first time. The late-time
asymptotics for rψ jIþ, in conjunction with the expression (9) for
Ið1Þ, yield (9). The asymptotic term for ψ jr¼R for outgoing
perturbations in the strong field region fr ¼ Rg is consistent with
the results presented in [26,29,35,39,43,52,63].

Data ψ jr¼R rψ jIþ

outgoing ½ð4MÞ=ðr −MÞ�Hτ−2 ð4MH−2Ið1ÞÞτ−2
static moment 4fI þ ½M=ðr −MÞ�Hgτ−2 2I½ψ�τ−1
ingoing −8fIð1Þþ½M=ðr−MÞ�Hð1Þgτ−3 −2Ið1Þτ−2

TABLE III. Asymptotics along the event horizon on ERN for
outgoing and ingoing perturbations. The ingoing asymptotics are
new and have not appeared before in the literature. The outgoing
asymptotics are consistent with [26,35,43].

outgoing data ingoing data

ψ jHþ 2H · τ−1 −2Hð1Þ · τ−2
∂rψ jHþ −ð1=MÞ ·H ð2=M2Þ ·Hð1Þ · τ−2
∂r∂rψ jHþ ð1=M3Þ ·H · τ ð1=M3Þ ·Hð1Þ
∂r∂r∂rψ jHþ −½3=ð2M5Þ� ·H · τ2 −ð3=M5Þ ·Hð1Þ · τ
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rψ jγI . We next derive the precise asymptotics of r2∂ρψ jγI .
Integrating the wave equation along Στ for r ¼ R to r ¼ rγI
we obtain

jDr2∂ρψ jγI −Dr2∂ρψ jr¼Rj≲
Z

rγI

R
rj∂ρðrTψÞjdr: ð13Þ

The right-hand side can be shown to be bounded by τ−2−ϵ

for some ϵ > 0, which implies that the asymptotics for
r2∂ρψ jγI can be derived from the asymptotics of ∂ρψ jfr¼Rg.
We can now apply (11) for r ¼ R to conclude that the
asymptotics for r2∂ρψ jγI and rψ jγI depend only on H.
Specifically, we obtain as τ → ∞:

rψ jγI ∼ −r2∂ρψ jγI ∼ −Dr2∂ρψ jr¼R ∼ 4MHτ−2: ð14Þ

Step 4. Integrating backwards the estimate for ∂ρψ of the
previous steps from γI up to γH and using the asymptotics
for rψ jγI , we obtain the asymptotics for rψ in the region
between γH and γI .
Step 5. In this last step we derive the asymptotics for rψ

to the right of γI all the way up to null infinity. We use
the construction for the singular time integral ψ ð1Þ once
again. Specifically, we derive the asymptotics of the
difference Tðrψ ð1ÞÞ − Tðrψ ð1ÞÞjγI ¼ rψ − rψ jγI in terms

of Ið1Þ ¼ I½ψ ð1Þ�:

jrψ jIþðτÞ − rψ jγI ðτÞ þ 2Ið1Þ · τ−2j≲ Cτ−2−ϵ:

Plugging in the asymptotics (14) of rψ jγI yields the
asymptotics of the radiation field rψ as in Table IV.
Concluding remarks.—The physical relevance of our

results stems from the expectation that the horizon hair of
axisymmetric scalar perturbations on extremal kerr (EK)
can be analogously measured from null infinity. Even
though the late-time behavior for fixed nonzero azimuthal
modes on EK has been derived by Casals-Gralla-
Zimmerman [29], the precise late-time asymptotics are
not known. In fact, a very exciting problem would be to
examine potential contributions of the near-horizon geom-
etry to the precise late-time asymptotics for general (with-
out any symmetry assumptions) scalar, electromagnetic,
and gravitational perturbations on EK. A closely related
problem is to probe the measurability properties of the
Lucietti-Reall gravitational instability [25] of EK from null
infinity. The ultimate goal would be of course to study the
fully nonlinear perturbations of EK in the context of the
Einstein-vacuum equations. A simplified but still very
interesting problem would be to obtain analogous meas-
urability results for the Murata-Reall-Tanahashi space-
times [33].
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