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The Loschmidt echo is a purely quantum-mechanical quantity whose determination for large quantum
many-body systems requires an exceptionally precise knowledge of all eigenstates and eigenenergies. One
might therefore be tempted to dismiss the applicability of any approximations to the underlying time evolution
as hopeless. However, using the fully connected transverse-field Ising model as an example, we show that this
indeed is not the case and that a simple semiclassical approximation to systems well described by mean-field
theory is, in fact, in good quantitative agreement with the exact quantum-mechanical calculation. Beyond
the potential to capture the entire dynamical phase diagram of these models, the method presented here also
allows for an intuitive geometric interpretation of the fidelity return rate at any temperature, thereby connecting
the order parameter dynamics and the Loschmidt echo in a common framework. Videos of the postquench
dynamics provided in Supplemental Material visualize this new point of view.
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Equilibrium phase transitions are remarkable phenomena
that have been under thorough experimental and theoretical
investigation for decades. Over time, a number of advanced
techniques such as scaling theory [1–3] and the renorm-
alization group method [4–9] have been developed for the
determination of the universal properties close to a critical
point. One might ask whether an in-depth study of
dynamical critical phenomena far from equilibrium is
possible along the lines established in the equilibrium
framework. With the advent of modern ultracold atom
[10–13] and ion-trap [14–16] experiments, this originally
purely academic question has become accessible in labo-
ratories as well.
Dynamical quantum phase transitions (DPTs) occur in

the dynamics of a quantum system after quenching a set of
control parameters fΓg of its Hamiltonian: HðfΓigÞ →
HðfΓfgÞ. Recently, the study of DPTs has focused on two
largely independent concepts [17]. The first one, DPT-I
[18–29], resembles the equilibrium Landau theory: A
system undergoes a dynamical phase transition if the
long-time limit of the order parameter is finite for one
set fΓi;Γfg, whereas it vanishes for different final param-
eters fΓfg. Furthermore, DPT-I also entails criticality in the
transient dynamics of the order parameter and two-point
correlators before reaching the steady state, giving rise
to effects such as dynamic scaling and aging, which have
been investigated theoretically [30–32] and also observed
experimentally [33].
The second concept, DPT-II, generalizes the nonanalytic

behavior of the free energy at a phase transition in the
thermodynamic limit (TL) to the out-of-equilibrium case.
To this end, the Loschmidt echo (LE) has been introduced

as a dynamical analog of a free energy per particle [34].
DPT-II has been extensively studied both theoretically
[34–43] and in experiments [44,45]. As we aim to calculate
dynamical phase transitions at finite preparation temper-
atures, we define the distance covered in Hilbert space
between the prequench density matrix ρi and the time-
evolved ρðtÞ ¼ expð−iHftÞρi expðiHftÞ in the limit of
infinite system size N as the fidelity return rate [46–49]

rFðtÞ ¼ − lim
N→∞

1

N
ln

����Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρi

p
ρðtÞ ffiffiffiffi

ρi
pq ����

2

: ð1Þ

For T → 0, the return rate reduces to the original definition
rðtÞ ¼ −limN→∞N−1 ln jhΨ0je−iHftjΨ0ij2 [34]. Within our
semiclassical theory, we will find a simple and intuitive
expression for the distance measure (1).
DPT-II is characterized by cusps occurring in rFðtÞ at

critical times tc after a quench. There are two scenarios for
these cusps. The first is when the argument of the logarithm
is zero, which is encountered only at T ¼ 0 [46] in two-
band models of free fermions [40,50,51], when for critical
quasimomenta kc the population becomes inverted [39].
Upon integration over k space, the resulting logarithmic
divergence will be turned into a cusp. Alternatively, the
argument of the logarithm may itself become nonanalytic
[52,53], which occurs, for example, in nonintegrable
quantum Ising chains with ferromagnetic power-law
interactions [54–57]. At T ¼ 0, numerical investigations
have shown a relationship between DPT-I and DPT-II
in the presence of sufficiently long-range interactions
[52,53,58,59]. At finite temperatures, the DPT-I and
DPT-II phase diagrams based on rF coincide for the fully
connected transverse-field Ising model (FCTFIM) [60].
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Of course, like for equilibrium phase transitions, a
perfectly sharp cusp of any LE will be observable only
in the TL. An accurate determination of the LE in this limit,
however, requires the computation of overlaps between
different eigenstates to a precision that grows exponentially
with the system size. On the one hand, this sensitive
dependence on N complicates the numerical treatment of
large systems necessary for a reliable finite-size scaling,
and, on the other hand, it may seem to completely rule out
any kind of perturbative expansion with algebraic correc-
tions. Here we show otherwise.
As we will discuss in detail in the case of the FCTFIM,

for models where mean-field theory (MFT) can be applied,
one can create a controlled, semiclassical extension to the
solution of the mean-field equations, which accurately
reproduces the full return function and, in particular,
determines the DPT-II phases correctly. In fact, a closely
related analysis has already successfully explained the
collapse and revival of the time-of-flight interference
patterns following a quench to the deep lattice limit of
the Bose-Hubbard model [13]. The Hamiltonian of the
FCTFIM, also known as the Lipkin-Meshkov-Glick
(LMG) model in nuclear physics [61–66], reads

H ¼ −
J
8N

X
i≠j

σziσ
z
j −

Γ
2

X
i

σxi ; ð2Þ

where σfx;y;zgi are the Pauli matrices on site i. The
normalization ensures extensive scaling of the energy.
Furthermore, we set the ferromagnetic coupling J to unity.
In order to study the DPT-II induced by quenches in the
transverse-field strength Γ, we utilize the infinite-range
interaction to rewrite the Hamiltonian in terms of the total

spin Sfx;y;zg ¼
P

iσ
fx;y;zg
i =2:

H ¼ −
1

2N
SzSz − ΓSx; ð3Þ

which is exact up to an irrelevant constant. Because of
½H;S2� ¼ 0, the total spin length S is conserved, even after
the quench Γi → Γf.
For this quench protocol, the DPT-I phase diagram for

mz ¼ hSzi=N is completely determined by MFT [21],
which is equivalent to the leading order of a 1=N expan-
sion. It is based on the Bloch sphere representation of
the spin in terms of the continuous classical vector
S ¼ Sðsin θ cosϕ; sin θ sinϕ; cos θÞ that contributes the
highest weight to the free energy arising from the pre-
quench Hamilton function

Hiðθ;ϕÞ ¼ −
S2

2N
cos2θ − ΓiS sin θ cosϕ: ð4Þ

The short-time evolution is then governed by the classical
equations of motion (EOM) derived from the postquench

Hamiltonian Hfðθ;ϕÞ; see (6) below. The MFT thus forms
the starting point for the semiclassical treatment of the LE
and the DPT-II phase diagram, the construction of which
we will now detail. For simplicity, we restrict ourselves to
Γi ¼ 0 in the rest of the Letter. Initially, we focus on the
zero-temperature case and deal with thermal states later.
At T ¼ 0, one first finds the vector Scl minimizing

Hiðθ;ϕÞ, which we choose, due to the spontaneously
broken Z2 symmetry, to be fully polarized along the
positive z axis. In other words, Scl has angular variables
θcl ¼ 0, ϕcl arbitrary, and the maximal possible length
Scl ¼ N=2. For later convenience, we also introduce
s ¼ 2S=N ∈ ½0; 1�, so here scl ¼ 1.
Next we have to quantize our theory in order to define

the notion of overlaps between different states, which
inherently arises from quantum mechanics. To do so, we
assign to Scl the spin WKB wave function [67–69] of a
quantum mechanical degree of freedom in the ground state
of the energy landscape Hiðθ;ϕÞ:

Ψ0ðθÞ ¼ N e−ð1=2ÞSclsin2θ; ð5Þ

where N ∼
ffiffiffiffiffiffi
Scl

p
is an inconsequential normalization; see

Supplemental Material [70]. To enforce Z2 symmetry
breaking, we restrict θ to the northern hemisphere. By
construction,Ψ0ðθ;ϕÞ correctly determines the fluctuations
hŜ2xi ¼ Scl=2 ¼ hŜ2yi and hŜ2zi ¼ S2cl with next-to-leading-
order corrections in N.
Having set up the semiclassical state at time t ¼ 0,

we now incorporate the time evolution with Hf by first
determining the classical trajectories of the angular vari-
ables (ϑðθ;ϕjtÞ;φðθ;ϕjtÞ), which result from the classical
EOM

dϑ
dt

¼ Γf sinφ;
dφ
dt

¼ Γf cotϑ cosφ; ð6Þ

with initial conditions (ϑðθ;ϕj0Þ;φðθ;ϕj0Þ) ¼ ðθ;ϕÞ.
These derive from the Heisenberg equations for the total
spin operators Sfx;y;zg by neglecting all commutators that
are suppressed by at least 1=N [60]. In close analogy to the
time evolution in a truncated Wigner approximation [71],
the initial amplitude Ψ0ðθÞ is then transported along the
classical trajectory, which implies that Ψ0(ϑðθ;ϕjtÞ)
depends on both initial angles θ and ϕ. Because of the
absence of any dephasing within this description, the
magnetization, however, will never relax. Higher-order
corrections can be treated by more faithfully representing
the Schrödinger equation on the Bloch sphere, which will
then include derivatives acting on the wave function (5)
[21]. Here we take no effects beyond (6) into account,
which will turn out to determine the critical times accu-
rately. In this limit, the Loschmidt return function at T ¼ 0,
defined in (1), reads
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rðtÞ ¼ −
1

N
ln

����
Z

dΩΨ�
0ðϑðθ;ϕjtÞÞΨ0ðθÞ

����
2

¼ 1

2
½sin2ϑðθ̄; ϕ̄jtÞ þ sin2θ̄� þOðN−1Þ; ð7Þ

where the integral sums over the surface of the Bloch
sphere with measure dΩ ¼ dϕdθ sin θ. The simple expres-
sion in the second line results from the limit N → ∞,
where, due to the extensive scaling of the exponent of the
wave function (5), at every moment in time the integral is
determined by the Loschmidt vector vmaxðtÞ ¼ (ϑðθ̄; ϕ̄jtÞ;
φðθ̄; ϕ̄jtÞ) corresponding to the saddle-point trajectory that
minimizes the exponent. Note that, as depicted in
Supplemental Material [70], the initial coordinates ðθ̄; ϕ̄Þ
are themselves time dependent. Furthermore, this result
allows for a simple geometric interpretation: The classical
trajectory with the smallest arithmetic mean of initial and
time-evolved WKB distances A0 ¼ −2Re ln ðΨ0=N Þ=N ¼
sin2θ=2 from the classical initial state dominates the LE.
To compute rðtÞ according to (7), we cover the Bloch

sphere with a Fibonacci lattice, assigning to each point the
corresponding WKB amplitude of (5). This lattice is then
evolved in time, by numerically solving (6) and finally
extracting the site that yields the largest contribution to rðtÞ.
Figures 1 and 2 illustrate our results for the spin

dynamics in case of quenches to Γf ¼ 0.2 and Γf ¼ 0.3
shortly after the first critical time. The corresponding return
rates can be found in Figs. 4(a) and 4(b). Movies of the spin
dynamics are attached as Supplemental Material [72–74].
The first quench is known to lie within the anomalous phase
[no cusp in the first period(s) of rðtÞ], whereas the latter
gives rise to a regular signal (all periods show nonanaly-
ticities) [52].
In the anomalous quench to Γf ¼ 0.2 [72], the classical

state vclðtÞ ¼ (ϑclð0;ϕjtÞ;φclð0;ϕjtÞ) moves only in the
upper hemisphere, yielding a positive mz at all times.
Consequently, its trajectory returns so quickly to the initial
state that the wave packet remains sufficiently concentrated
around the classical state to prevent any discontinuous
movement of the Loschmidt vector vmaxðtÞ [obtained from
(7)] during the first period. The first jump of vmaxðtÞ, and
therefore the cusp in rðtÞ, appears only in the second period
in agreement with the results obtained by ED calculations
(see Fig. 4). At very late times, the initial wave packet has
spread so far over the Bloch sphere that the Loschmidt
vector always points near the north pole, resulting in a very
small rðtÞ.
For the regular quench to Γf ¼ 0.3, on the other hand

[73], the classical vector crosses the equator of the Bloch
sphere where the increased fluctuations in Sz result in a fast
squeezing of the wave packet. This gives rise to a jump of
the dominant orientation already during the first period of
the motion and, thus, to a regular LE.

The semiclassical evolution, therefore, allows for a very
intuitive understanding of the relation between the order
parameter dynamics and the return rate.
Let us now consider finite temperatures where the initial

classical state for Γi ¼ 0 minimizes the mean-field free
energy

F ¼ −T ln

�Z
dΩ

Z
1

0

dss2DðNs=2Þe−βHiðθÞ
�
; ð8Þ

where

DðSÞ ¼
�

N

N=2 − S

�
−
�

N

N=2 − S − 1

�
ð9Þ

denotes the degeneracy of the spin subspace of length S.
These two equations specify the mean-field prequench state
in terms of Scl with θcl ¼ 0 and ϕcl arbitrary [60]. The exact
initial density matrix ρi ¼ Z−1P

n exp ð−βEnÞjEnihEnj in

FIG. 1. Semiclassical representation of the return rate on the
Bloch sphere of the zero-temperature anomalous quench Γi ¼
0 → Γf ¼ 0.2 shortly after the first critical time. The initial state
pointing to the north pole is depicted by a yellow vector. The
time-evolved classical initial state (blue vector) vclðtÞ ¼
(ϑclð0;ϕjtÞ;φclð0;ϕjtÞ) that governs the dynamics of the mag-
netization order parameter, and thus determines the DPT-I phase,
moves along the blue trajectory. The cloud of black dots indicates
the distribution of the wave function that initially was centered
symmetrically around the north pole. Finally, the red arrow,
which follows the red line, marks the orientation of the Loschmidt
vector vmaxðtÞ ¼ (ϑðθ̄; ϕ̄jtÞ;φðθ̄; ϕ̄jtÞ). At the critical time, the
sudden jump (dashed red line) of this saddle point orientation
from the trailing to the leading edge of the time-evolved quantum
amplitude results in a cusp in the return rate.
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the eigenbasis jEni of Hi in our semiclassical description
becomes

ρiðθ; θ0Þ ¼
S2cl
Z

Z
dΩ

Z
1

−1
d cos θnΨ�ðθ; EnÞΨðθ0; EnÞe−βEn;

ð10Þ

where the generalization of the WKB wave function in (5)
to an arbitrary eigenenergy En ¼ −sclSclcos2ðθnÞ=4 reads

Ψðθ; EnÞ ¼ N exp

�
Enb2

d3=2
½sinh ð4yÞ − 4y�

�
: ð11Þ

Here, N is an inconsequential static normalization
and d ¼ 24En=N þ 4s2cl, b ¼ sin θn, and y ¼
arcsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ndðb − sin θÞ=ð16bEnÞ

p
are functions of θ and

θn, where the latter separates the classically allowed
(θ < θn) from the forbidden region (see Supplemental
Material [70] for the derivation). In the TL, the off-diagonal
terms in (10) are suppressed by factors exponentially large
in the system size, and thus we can set θ0 ¼ θ.
Using this diagonal form of ρi and the fact that the

truncated time evolution acts only on the coordinates
ðϑðθ;ϕjtÞ;φðθ;ϕjtÞÞ, we can write for the fidelity LE
rFðtÞ ¼ −limN→∞N−1 ln jTr ffiffiffiffiffiffiffiffiffi

ρð0Þp ffiffiffiffiffiffiffiffi
ρðtÞp j2; cf. (1). In the

TL, the remaining integrals in this expression once again
reduce to their saddle-point values, equivalent to the
minimization problem over all starting points ðθ;ϕÞ in

rFðtÞ ¼ min
ðθ;ϕÞ

fdist½ϑðθ;ϕjtÞ� þ distðθÞg ð12Þ

and all classical angles θn in the combined thermal and
WKB distance measure

distðθÞ ¼ min
θn

�
βs2cl
8

sin2θn þ ReAðθ; θnÞ
	
: ð13Þ

The geometric interpretation of (12) remains the same as
in (7), but now distðθÞ first finds the saddle point of the
density matrix, i.e., the largest product of the wave function
ΨðEnÞ ¼ N exp ½−NAðθ; θnÞ=2� and the corresponding
Boltzmann factor exp ð−βEnÞ.
We illustrate the dynamics on the Bloch sphere for a

quench to Γf ¼ 0.2 [74] at β ¼ 5 in Fig. 3 and the
corresponding LE in Fig. 4. The initial state shows a finite
magnetization mz, but the radius of the Bloch sphere has
decreased to scl ≈ 0.71. Because of the thermal fluctua-
tions, the quench is now regular and, in contrast to the
T ¼ 0 case, shows the same features as Fig. 2. This can be
explained by the decreased spin length scl < 1, which
effectively renders the transverse field in the Hamiltonian
more relevant compared to the S2z term. As a result, the
ground state of the final Hamiltonian is paramagnetic, and
the quench crosses the ferro- to paramagnetic transition in
the DPT-I picture as well.
Finally, note that for high temperatures close to the

equilibrium critical temperature Tc ¼ 1=4 the initial

FIG. 3. Illustration of the Bloch sphere in the case of the regular
quench Γi ¼ 0 → Γf ¼ 0.2 at the finite inverse temperature
β ¼ 5. The color coding is the same as in Figs. 1 and 2.

FIG. 2. Depiction of the semiclassical spin configuration of the
regular quench Γi ¼ 0 → Γf ¼ 0.3 at T ¼ 0 shortly after the first
cusp. The color coding is the same as in Fig. 1.
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distribution on the Bloch sphere becomes fully determined
by thermal fluctuations. Hence, rF in (12) can then by
replaced by the completely thermal distance measure

rFðtÞ ¼
βs2cl
8

min
θn;ϕ

fsin2ϑðθn;ϕjtÞ þ sin2θng: ð14Þ

As evidenced in Fig. 4(c), this simplification already
produces decent results for the quench considered in
Fig. 3, where we are thus calculating an essentially classical
return rate.
Conclusion.—We have shown, using the example of the

FCTFIM, that, for systems where the short-time dynamics
is well described by MFT, the LE at zero temperature can
be described to a high degree of accuracy by a semiclassical
approximation. At sufficiently high temperatures, even a
purely classical thermal cloud yields a qualitative repro-
duction of the fidelity LE that is otherwise difficult to
obtain for large systems. This is remarkable, since the
implied approximations completely discard all dephasing,
thereby prohibiting the system to relax at late times. The
method also paves the way for the calculation of LEs or
entanglement witnesses like Fisher information [75–78]
within the more general framework of the truncated Wigner
approximation.

We thank Francesco Piazza and Wilhelm Zwerger for
fruitful comments on the manuscript. This project has been
supported by NIM (Nanosystems Initiative Munich).
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