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A novel formulation of fluid dynamics as a kinetic theory with tailored, on-demand constructed particles
removes restrictions on flow speed and temperature as compared to its predecessors, the lattice Boltzmann
methods and their modifications. In the new kinetic theory, discrete particles are determined by a rigorous
limit process which avoids ad hoc assumptions about their velocities. Classical benchmarks for
incompressible and compressible flows demonstrate that the proposed discrete-particles kinetic theory
opens up an unprecedented wide domain of applications for computational fluid dynamics.
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The kinetic theory of Boltzmann and Maxwell, as the
fundamental link between the particles’ picture of flowing
matter and a continuum projection thereof, has been a
valuable source of ideas in fluid dynamics. This particularly
concerns the lattice Boltzmann method (LBM) [1–4]. LBM
is a recast of fluid mechanics into a kinetic theory for the
populations of designer particles fiðx; tÞ, with simple rules
of propagation on a space-filling lattice formed by discrete
speeds C ¼ fci; i ¼ 1;…; Qg, in discrete-time t, and relax-
ation to a local equilibrium feqi ðx; tÞ at the nodes x. LBM
witnessed a rapid growth in applications such as multiphase
flow [5–7], microfluidics [8,9], hemodynamics [10], or
turbulence [11], to mention a few; for reviews, see
Refs. [12–14].
However, a critical look at LBM reveals major limita-

tions: all practical LBM models are severely restricted in
flow speed and temperature range. While these restrictions
may be traded for deeply subsonic, slow flows, even then
insufficient isotropy and the lack of Galilean invariance
impede simulations [15]. Moreover, the said limitations
become eventually insurmountable for compressible flows
[16–20]. It may be argued that LBM has reached its natural
limits with the simulation of quasi-incompressible flows,
and a different discrete kinetic theory is needed for
important fields such as combustion and aerodynamics.
In this Letter, we demonstrate that eventually all physical

limitations of the LBM are removed once the discrete kinetic
theory is formulated using tailored rather than fixed particles’
velocities. The new fully explicit realization is seamless; it
requires no a priori information on the type of flow and sets a
rigorous upper bound on the flow speed and temperature that
can be achieved with a given set of discrete speeds.
We begin with a clarification: LBM interprets the

discrete speeds ci as particles’ velocities, vLi ¼ ci. On the
contrary, here we understand ci as peculiar velocities [21],
relative to a reference frame velocity u and a temperature T.
Henceforth, particles’ velocities are defined as

vi ¼
ffiffiffi
θ

p
ci þ u; ð1Þ

where θ ¼ T=TL is the temperature reduced by the lattice
temperature TL, a constant which is known for any set of
discrete speeds C [22]. According to (1), LBM amounts to
setting a global reference frame “at rest,” u ¼ 0, and
choosing the fixed temperature T ¼ TL for all particles.
Here, we rather follow the interpretation (1) where the
reference frame velocity and temperature are kept so far
undetermined, and we are going to find optimal values for u
and T locally at every monitoring point, as presented in
detail below.
By specifying the frame velocity and temperature in (1),

one sets the reference frame (or gauge) λ ¼ fu; Tg for the
discrete velocities. LBM corresponds to the standard gauge
λL ¼ f0; TLg. We denote fλ ¼ ðfλ1;…; fλQÞ† as the vector
of populations relative to the gauge λ. The transform of the
populations to another gauge λ0 ¼ fu0; T 0g is facilitated
by matching Q linearly independent moments (m, n are
integers; D ¼ 2 to ease notation),

Mλ
mn ¼

XQ

i¼1

fλi ð
ffiffiffi
θ

p
cix þ uxÞmð

ffiffiffi
θ

p
ciy þ uyÞn: ð2Þ

Let us use a shorthand notation for a linear map of
populations into moments Mλ (2), Mλ ¼ Mλfλ, where
Mλ is the Q ×Q matrix of the linear map. The matching
condition for the moments in both gauges λ and λ0 reads

Mλ ¼ Mλ0 : ð3Þ
In other words, the moments of the populations are
requested to be independent of the choice of a gauge,
analogously to the independence of continuous-velocity
moments (integral quantities) of the integration variable.
Moments matching condition (3) imply that populations are
transformed from one gauge to another with the transfer
matrix Gλ0

λ ,
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fλ
0 ¼ Gλ0

λ f
λ ¼ M−1

λ0 Mλfλ: ð4Þ

Finally, we introduce a reconstruction formula for popu-
lations at any point x at time t:

f̃λðx; tÞ ¼
Xk

s¼1

asðx − xsÞGλ
λs
fλsðxs; tÞ; ð5Þ

where summation is carried over collocation points xs; λs,
s ¼ 1;…; k corresponds to local gauges at the collocation
points at time t, λs ¼ fuðxs; tÞ; Tðxs; tÞg, and as are
interpolation functions (standard Lagrange polynomials
were used; k determines the order, k ¼ 3 below). Note
that the reconstruction formula (5) enforces populations at
collocation points to be treated in a specified gauge λ
through the transform (4).
We now present the discrete kinetic theory in an optimal

local gauge. Introducing the time step δt, evaluation of the
populations at the monitoring point x at time t involves the
propagation and the collision steps, mediated by the gauge
transform.
Propagation.—Semi-Lagrangian advection is performed

first, using the reconstruction formula (5) at the departure
point of characteristic lines, x − v0i δt,

fλ0i ¼ f̃λ0i ðx − v0i δt; t − δtÞ; ð6Þ

where the characteristic directions v0i [or discrete velocities,
cf. Eq. (1)] are set relative to a seed gauge λ0 ¼ fu0; T0g.
For the latter, it is convenient to choose flow velocity and
temperature at the monitoring point x at time t − δt:

u0 ¼ uðx; t − δtÞ; T0 ¼ Tðx; t − δtÞ; ð7Þ

yielding

v0i ¼
ffiffiffiffiffi
θ0

p
ci þ u0; ð8Þ

with θ0 ¼ T0=TL. Since u0 and T0 are known from the
previous time step, the populations (6) are determined
unambiguously in this predictor propagation step.
With the populations (6), the density, momentum, and

temperature are evaluated at the monitoring point using
discrete velocities (8):

ρ1 ¼
XQ

i¼1

fλ0i ; ð9Þ

ρ1u1 ¼
XQ

i¼1

v0i f
λ0
i ; ð10Þ

Dρ1T1 þ ρ1ku1k2 ¼
XQ

i¼1

kv0i k2fλ0i : ð11Þ

This defines the corrector gauge λ1 ¼ fu1; T1g at the
monitoring point, and advection (6) is executed anew with
the updated velocities, v1i ¼

ffiffiffiffiffi
θ1

p
ci þ u1, to get corrected

postpropagation populations fλ1i . The predictor-corrector
process is iterated until convergence, with the limit values,

ρðx; tÞ, uðx; tÞ, Tðx; tÞ, fλðx;tÞi ¼ limn→∞ρn, un, Tn, fλni ,
defining the density, the flow velocity, the temperature, and
the precollision populations, respectively, at the monitoring
point x at time t. Note that, by construction, the limit gauge
λðx; tÞ ¼ fuðx; tÞ; Tðx; tÞg is the comoving reference frame
in which the discrete particle’s velocity (1) is defined by the
values of the flow velocity and of the temperature at the
monitoring point.
Collision.—In the comoving reference frame, the local

equilibrium populations are defined by the density only,

feqi ¼ ρWi; ð12Þ

where the weights Wi are known for any discrete speeds
set C [22]. Hence, precollision populations are transformed
to postcollision as

fiðx; tÞ ¼ fλðx;tÞi þ 2β½ρðx; tÞWi − fλðx;tÞi �; ð13Þ

for the Bhatnagar-Gross-Krook (BGK) collision model.
The relaxation parameter β is related to the kinematic
viscosity by ν ¼ Tð1=2β − 1=2Þδt. By fixing the temper-
ature and canceling the energy corrections (11), one arrives
at the isothermal version of the proposed kinetic theory.
Comments are in order here: (i) In LBM, particles (rep-
resented by discrete velocities) are fixed once and for all
with the identification vLi ¼ ci. Then the local equilibrium
acquires noninvariant dependence on the flow velocity and
temperature which leads to errors once u ≠ 0 and T ≠ TL.
Accumulation of these errors is also the primary source of
numerical instabilities when the plain BGK collision model
is used in LBM. On the contrary, the new representation of
kinetics creates “optimal particles” (or optimal discrete
velocities), specific to each monitoring point at a given time
(see propagation step) so that the equilibrium (12) “seen”
by the populations becomes exact. Hence, this new
representation is, in principle, restricted neither in the
flow speed nor in the range of temperature variation.
Error-free equilibrium can also result in unconditional
numerical stability when using the BGK model. Below,
we shall probe all this with benchmark simulations.
(ii) If the standard gauge λL is adopted, then the transfer
matrix G is dropped in (5), and advection (6) becomes
fi ¼ f̃iðx − ciδt; t − δtÞ. The latter, together with finite
element reconstruction, was used in a recent semi-
Lagrangian LBM (SLLBM) [23]. SLLBM is not restricted
to space-filling lattices and was realized on body-fitted
unstructured meshes [24], an obvious advantage if turbu-
lent flow simulations are concerned. Previous studies
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[23–25] demonstrate that semi-Lagrangian reconstruction
features low numerical dissipation; neither the gauge
transform nor the BGK collision contribute to spurious
dissipation.
The standard two-dimensional nine-speed setD2Q9 was

used in all simulations below and the BGK collision (13)
was implemented for both isothermal and compressible
flow. The transfer matrix was found in closed form and
is presented in the Supplemental Material [26], which
includes Refs. [27–29], together with the reconstruction
formula realization and the hydrodynamic equations recov-
ered by this model. The LBM time step δt ¼ 1 was used in
all simulations.
First, we measured kinematic viscosity at isothermal

conditions. The decay of plane shear wave with initial
profile uξðξ; ηÞ ¼ A sinð2πξ=LÞ, A ¼ 0.05, in transverse
direction and advection uηðξ; ηÞ ¼ Maa

ffiffiffiffi
T

p
in the wave-

vector (longitudinal) direction was studied. The wave
vector was rotated by π=4 with respect to the standard
Cartesian x axis and periodic boundary conditions were
applied in both longitudinal and transverse directions.
This tilted-wave setup is standard to probe isotropy and
Galilean invariance [30,31]: kinematic viscosity should not
depend on the advection Mach number Maa. An equidistant
mesh with a resolution of L ¼ 200

ffiffiffi
2

p
in the longitudinal

direction was used. Kinematic viscosity was measured by a
least square fit of the exponentially decaying function.
In Fig. 1, the kinematic viscosity is shown for various
temperatures, in a wide range of advection speeds. It is
apparent that the results of the present formulation are in
excellent agreement with theoretical prediction, for advec-
tion Mach numbers even as high as Maa ¼ 100, and are
independent of temperature. This is in sharp contrast to the
standard lattice BGK (LBGK) [4] which shows a lack of
Galilean invariance already at Maa ≳ 0.1. While the latter

failure of LBM has been long known [30,31], it is striking
that a mere reformulation of the same kinetic model in the
optimal gauge extends validity by at least 3 orders of
magnitude in terms of flow speed. Note that, since the
temperature can be set at a high value, and not only at
T ¼ TL as in the LBM, the quasi-incompressible flow
simulations can be performed at realistic Mach numbers
with the present method. This was used in the Green-Taylor
vortex simulation at Ma ∼ 10−3 which confirmed second-
order convergence, see Supplemental Material [26].
We now turn to the compressible flow while still using

the nine-speed set D2Q9. The difference with the above
isothermal model is that now the energy conservation (11)
is included in the predictor-corrector propagation step of
the algorithm. The LBM counterpart is the thermal LBGK
[32]. The first numerical experiment concerns measuring
the speed of sound and comparing it to the theoretical
prediction, cs ¼

ffiffiffiffiffiffi
γT

p
, where the adiabatic exponent γ ¼ 2

for two-dimensional ideal gas. To that end, the speed of
sound was measured by introducing a pressure disturbance
Δp ¼ 10−3 and tracking the resulting shock front. The
results for a fluid at rest, and advected with Maa ¼ 10 are
presented in Fig. 2. It is apparent that the speed of sound
measured in the simulation excellently agrees with theory
for all temperatures in the range T ∈ ½10−4; 102�, irrespec-
tive of the advection speed. Figure 2 also shows that the
thermal LBGK with nine speeds matches the correct speed
of sound only at the lattice temperature T ¼ TL [33]. Thus,
the present method extends the physical relevance of
thermal D2Q9 LBGK by about six decades in terms of
temperature range without changing the number of par-
ticles. In general, simulations of compressible flows with
LBM require higher-order lattices, with a much larger
number of discrete speeds [34–37]. We now compare the
above nine-speedD2Q9model with the entropic LBM on a
higher-order lattice with forty-nine speeds, D2Q49 [34].
The benchmark consists of the advection of a vortex by a

FIG. 1. Kinematic viscosity from decaying π=4-tilted shear
wave with D2Q9, at various advection Mach numbers
Maa ¼ u=

ffiffiffiffi
T

p
. Lattice temperature TL ¼ 1=3. Lines: imposed

theoretical values ν ¼ 0.2, ν ¼ 0.02, ν ¼ 0.002. Symbol: present
method at fixed temperature TL=2 (cross), TL (circle), and 2TL
(square). Triangle: LBGK [4] at TL.

FIG. 2. Speed of sound with D2Q9. Line: theory, cs ¼
ffiffiffiffiffiffi
2T

p
.

Circle: present method without advection. Square: present
method with an advection Mach number Maa ¼ 10. Triangle:
thermal LBGK [33].
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uniform flow. The vortex with radius R is propagated with
advection Mach number Maa ¼ U∞=

ffiffiffiffiffiffiffiffiffi
2T∞

p
while the

vortex Mach number Mav defines the tangential velocity
of the vortex uφðrÞ¼Mavrexp½ð1−r2Þ=2�, where r ¼ r0=R
is the reduced radius [38,39]. In Fig. 3, pressure contours
are shown for the present D2Q9 model (top row), together
with those computed by the entropic LBM D2Q49 [34]
(bottom row), for various combinations of Maa and Mav.
Note that LBM [34] is in a global gauge λ ¼ fU; TLg,
U ¼ ð1; 0Þ; this minimizes errors whenever ux ∼ 1. Clearly,
with a global gauge conveniently chosen, unidirectional
advection at small vortex Mach numbers can be accom-
plished with LBM (Fig. 3, first column). However, devia-
tions of the local velocity and temperature away from the
global gauge eventually lead to spurious deformation of
the vortex (Fig. 3, second and third column). In contrast, the
present method shows no deformation of the propagating
vortex, even for large Mach numbers (Fig. 3, last column).
This shows superiority of the present method over the
higher-order LBM. Other pertinent aspects were studied
using this benchmark. We observed that the predictor-
corrector tailoring of the particles required about two to
three iterations to convergence, with a maximum of five at a
fraction of the grid points, when the gaugewas initialized as
in (7); see Supplemental Material [26]. The independence
of the limit from the seed gauge was probed by choosing
different values of u0 and T0; e.g., u0 ¼ 0, T0 ¼ TL, or
even “unnatural” u0 ¼ −uðx; t − δtÞ. We found that con-
verged values are independent of the initialization which
reveals that flow density, velocity, and temperature are
indeed defined correctly. Thus, we can view the particles as
an attractor of the predictor-corrector process. The basin
of the attractor depends on the Mach number and narrows
down at larger values; however, the seed gauge (7) was
always included in the basin. This shows the robustness of
the emerging kinetic picture.
The collision step retains locality and advanced collision

models already elaborated in LBM are straightforward to
apply in the present context. We conclude this Letter with a
simulation of sound generation by a vortex passing through

a shock wave. To compare with the direct numerical
simulation (DNS) of [39], we implemented the two-
population (tunable adiabatic exponent) two-relaxation
time (variable Prandtl number) collision model of
Ref. [40] in the present setting using the D2Q25 velocity
set formed by roots of the fifth-order Hermite polynomial
[32]. (The transfer matrix has a similar to D2Q9 simple
structure; details shall be reported in a follow-up paper.) In
Fig. 4, density ρ is compared with the DNS [39] at the
reduced time t ¼ 8 (time in units of R=a∞, where R ¼ 60 is
the radius of the vortex and a∞ ¼ 1 is the speed of sound
upstream of the shock). One can see the deformed shock
front, the passing vortex, and reflected shocks developing,
one of which remains connected to the vortex at this time.
Excellent comparison between DNS and the present
method is apparent; see also the Supplemental Material
[26] for a further comparison of sound pressure.
Summarizing, the LBM is rigorously valid in the limit of

vanishing flow velocity and at fixed lattice temperature.
Practitioners of LBM circumvent these limitations by
setting empirical bounds on the allowed variation of
velocity and temperature (e.g., the flow velocity to stay
below ten percent of the lattice speed of sound, kuk≲
0.1

ffiffiffiffiffiffi
TL

p
, a common recommendation for incompressible

flow simulations; see Fig. 1). However, such heuristic

FIG. 3. Pressure contours of the vortex propagation for various
advection and vortex Mach numbers. (Top row) present method,
D2Q9; (Bottom row) entropic LBGK, D2Q49 [34].

FIG. 4. Vortex-shock interaction. Snapshot of density contours
for the case of vortex propagated with Maa ¼ 1.2, Mav ¼ 0.5,
and Re ¼ 400. Contour levels are from ρmin ¼ 0.92 to ρmax ¼
1.55 with an increment of Δρ ¼ 0.0053. (Top) DNS [39];
(Bottom) present.
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constraints cannot be universally maintained and quickly
become meaningless, especially for compressible flows.
We proposed a major revision of the kinetic theory for fluid
dynamics by constructing “particles on demand” instead of
a priori fixed. Its realization demonstrates that the range of
accessible flow velocities and temperatures becomes
restricted only by the choice of lattice speeds rather than
by the closeness of flow parameters to u ¼ 0 and T ¼ TL.
The new discrete kinetic theory necessarily abandons the
LBM lattice propagation since tailoring particles’ velocities
does not match to the links of a lattice. While the
propagation step becomes computationally more intensive,
the algorithm is still fully explicit, and the operation
domain is incomparably larger. Finally, error-free collision
features numerical stability even with the simplest BGK
model. This all, as we believe, opens up a new perspective
on complex flow simulations.
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