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QSTAR, CNR-INO and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy

(Received 15 June 2018; published 27 September 2018)

We identify precision limits for the simultaneous estimation of multiple parameters in multimode
interferometers. Quantum strategies to enhance the multiparameter sensitivity are based on entanglement
among particles, modes, or combining both. The maximum attainable sensitivity of particle-separable
states defines the multiparameter shot-noise limit, which can be surpassed without mode entanglement.
Further enhancements up to the multiparameter Heisenberg limit are possible by adding mode
entanglement. Optimal strategies that saturate the precision bounds are provided.
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A central problem of quantum metrology is to identify
fundamental sensitivity limits and to develop strategies to
enhance the precision of parameter estimation [1–5].
Quantum noise poses an unavoidable limitation even under
ideal conditions, in the absence of environmental coupling.
Nevertheless, quantum noise can be reduced by adjusting the
properties of the probe state and the output measurement.
Knowing the sensitivity limits of different classes of probe
states is thus crucial to identifyquantum resources that lead to
an enhancement of sensitivity over classical strategies. The
shot noise, i.e., the maximum sensitivity achievable with
particle-separable states, and the Heisenberg limit, i.e., the
maximum sensitivity achievable with any probe quantum
state, have been clearly identified for the estimation of a
single parameter [6–9]. Sub-shot-noise sensitivities have
been reported in several optical [3,10–12] and atomic [5]
experiments, opening up strategies to achieve quantum
enhancements in matter-wave interferometers [13], atomic
clocks [14], quantum sensors [15], gravitational wave
detectors [16,17], and biological measurements [18].
However, much less is known about the sensitivity bounds
for the simultaneous estimation ofmultiple parameters.What
is the shot-noise and Heisenberg limit in this case? What is
the role played by entanglement among the modes where the
parameters are encoded? Can multiparticle and multimode
entanglement enhance sensitivity?
Multiparameter estimation finds many important appli-

cations in quantum imaging [19–21], microscopy and
astronomy [22,23], and sensor networks [24,25], as well
as the detection of inhomogeneous forces, vector fields,
and gradients [26–28]. All these tasks go beyond single-
parameter estimation. Only a clear identification of relevant
quantum resources can lead to a quantum advancement of
these technologies [29–39].
In this Letter, we present the precision limits for multi-

parameter quantum metrology in multimode interferome-
ters (see Fig. 1), unveiling the nontrivial interplay of mode
and particle entanglement. The precision limits are given in

matrix form, as bounds for the covariance matrix for
the estimators of multiple parameters. As in the single-
parameter case, the shot-noise limit is found by maximizing

(a)

(b)

FIG. 1. General scheme for multiparameter quantum metrology
with commuting generators of phase shifts. (a) The probe state ρ̂
of N particles is distributed among M modes. In each mode
k ¼ 1;…;M, a parameter θk is encoded as a relative phase shift
between sublevels. The sensitivity is quantified by the covariance
matrix of the estimators Σ. The probe state ρ̂ can be prepared as
schematically shown in (b): mode and particle separable (MsPs),
mode separable and particle entangled (MsPe), mode entangled
and particle separable (MePs), and mode and particle entangled
(MePe). The gray bars represent the particle partition of the
quantum state, the white bars the mode partition. Mode entan-
glement is illustrated by vertical blue delocalized distributions,
particle entanglement by horizontal delocalization.

PHYSICAL REVIEW LETTERS 121, 130503 (2018)

0031-9007=18=121(13)=130503(7) 130503-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.130503&domain=pdf&date_stamp=2018-09-27
https://doi.org/10.1103/PhysRevLett.121.130503
https://doi.org/10.1103/PhysRevLett.121.130503
https://doi.org/10.1103/PhysRevLett.121.130503
https://doi.org/10.1103/PhysRevLett.121.130503


the multiparameter sensitivity over all particle-separable
states. While particle-separable strategies that use mode
entanglement [MePs in Fig. 1(b)] can overcome the
sensitivity achievable by states that are particle separable
and mode separable (MsPs), mode entanglement is not
necessary to overcome the multiparameter shot-noise limit.
The highest sensitivity achievable by mode-separable states
is obtained in the presence of particle entanglement (MsPe).
Finally, the multiparameter Heisenberg limit, defined as the
sensitivity bound optimized over all quantum states, can
only be reached if both particle entanglement and mode
entanglement (MePe) are present. We identify the respec-
tive states that saturate the discussed bounds.
Multimode interferometers for multiphase estimation.—

In the interferometer scheme of Fig. 1(a), each parameter θk
is imprinted in one of theM separate modes via the unitary
evolution ÛðθÞ¼expð−iPM

k¼1ĤkθkÞ¼expð−iĤ ·θÞ. Here,
θ ¼ ðθ1;…; θMÞ and Ĥ ¼ ðĤ1;…; ĤMÞ are the vectors of
unknown phases and local Hamiltonians, respectively. The
initial probe state ρ̂ evolves into ρ̂ðθÞ ¼ ÛðθÞρ̂Û†ðθÞ and it
is finally detected. We indicate with x ¼ ðx1;…; xμÞ a
sequence of μ independent measurement results that occurs
with probability pðxjθÞ ¼ Qμ

s¼1 pðxsjθÞ. The sensitivity of
the multiparameter estimation is determined by theM ×M
covariance matrix Σ with elements Σkl ¼ Covðθest;k; θest;lÞ,
where θest;kðxÞ is a locally unbiased estimator for θk,
with hθest;ki ¼ θk and dhθest;ki=θl ¼ δkl [1]. Any linear
combination of the M parameters n · θ ¼ P

M
k¼1 nkθk

is estimated with variance Δ2ðPM
k¼1 nkθest;kÞ ¼P

M
kl¼1 nknlCovðθest;k; θest;lÞ ¼ nTΣn. The matrix Σ fulfills

the chain of inequalities

Σ ≥ F−1=μ ≥ F−1
Q =μ; ð1Þ

that identify the Cramér-Rao (CRB) and quantum Cramér-
Rao (QCRB) bounds [1], respectively,meaning thatnTΣn ≥
nTF−1n=μ ≥ nTF−1

Q n=μ for arbitrary n. Here F−1 is the
inverse of the classical Fisher matrix with elements ðFÞkl ¼P

xpðxjθÞ[ð∂=∂θkÞ logpðxjθÞ][ð∂=∂θlÞ logpðxjθÞ], and
ðFQ½ρ̂�Þkl ¼ Tr½ρ̂L̂kL̂l�, where dρ̂=dθk ¼ ðL̂kρ̂þ ρ̂L̂kÞ=2,
are the elements of the quantum Fisher matrix [1,2]. F
and FQ are positive semidefinite matrices and the chain of
inequalities (1) is defined only if F and FQ are invertible.
Since in the multimode setting considered here all local
Hamiltonians Ĥk commute with each other, the bound F ¼
FQ can always be saturated by an optimally chosen set of
local projectors in each mode [40,41], for instance, by the
projectors onto the eigenstates of L̂k [42].
We consider probe states of N particles and collective

local operators Ĥk ¼
P

N
i¼1 ĥ

ðiÞ
k , where ĥðiÞk is a local

Hamiltonian for the ith particle in the kth mode. The

ĥðiÞk have the same spectrum λkj with eigenvectors jλðiÞkj i for
all i, where j labels the eigenvalues. For simplicity, we limit

the discussion in the main text to the case of two sublevels
per mode (j ¼ �) with λk� ¼ � 1

2
. A detailed demonstra-

tion of all bounds reported below as well as a direct
generalization to multilevel systems is given in the
Supplemental Material [43].
Sensitivity bounds for particle-separable states.—Here

we derive the sensitivity bound for particle-separable states

ρ̂p-sep ¼
P

γpγρ̂
ð1Þ
γ ⊗ � � � ⊗ ρ̂ðNÞ

γ , where pγ is a probability

distribution and the ρ̂ðiÞγ are arbitrary single-particle density
matrices of the ith particle. The quantum Fisher matrix of
any particle-separable probe state is bounded by

FQ½ρ̂p-sep; Ĥ� ≤ 4
XN
i¼1

Γ½ρ̂ðiÞ; ĤðiÞ�;

where Γ½ρ̂ðiÞ; ĤðiÞ� is the covariance matrix of the reduced

density matrix ρ̂ðiÞ ¼ P
γpγρ̂

ðiÞ
γ of particle i with elements

ðΓ½ρ̂ðiÞ;ĤðiÞ�Þkl¼hĥðiÞk ĥðiÞl iρ̂ðiÞ−hĥðiÞk iρ̂ðiÞ hĥðiÞl iρ̂ðiÞ and ĤðiÞ ¼
ðĥðiÞ1 ;…; ĥðiÞM Þ. To find the multiparameter shot noise (SN),
we maximize FQ½ρ̂p-sep; Ĥ� over all ρ̂p-sep with given
average particle numbers hN̂ki and

P
M
k¼1hN̂ki ¼ N. We

obtain

FSN ≡max
ρ̂p-sep

FQ½ρ̂p-sep; Ĥ�

¼

0
BB@

hN̂1i 0 � � � 0

..

. . .
. ..

.

0 � � � 0 hN̂Mi

1
CCA: ð2Þ

The convexity of the quantum Fisher matrix ensures that
the bound (2) is achieved by a product of pure single-
particle states jΨð1Þi ⊗ � � � ⊗ jΨðNÞi. Optimal states must

have the property hĥðiÞk ijΨðiÞi ¼ 0 for all k and i, due to
λkþ þ λk− ¼ 0, which leads to the diagonal form of FSN. If
all hN̂ki > 0, FSN is invertible and, according to Eq. (1),
defines the multiparameter shot-noise limit Σ ≥ ΣSN=μ≡
F−1
SN=μ ¼ diagð1=hN̂1i; 1=hN̂2i;…; 1=hN̂MiÞ=μ, i.e., the

smallest covariance matrix Σ for particle-separable probe
states. In particular, we recover the shot-noise ðΔθestÞ2 ¼
1=μN [6,7] in the case of a single parameter (M ¼ 1). The
shot-noise rank 0 ≤ rSN ≤ M, defined as the number of
positive eigenvalues of the matrix FQ½ρ̂; Ĥ� − FSN, pro-
vides the number of linearly independent combinations of
the M parameters that can be estimated with sub-shot-
noise sensitivity. A rank rSN > 0 can only be achieved by
particle-entangled states.
Let us now gain a better understanding of the role of

mode entanglement in determining the sensitivity of
particle-separable states. Considering a pure particle-
product state formally corresponds to sending the N
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particles one-by-one (without any classical correlations)
through the M-mode interferometer. Each of the particles
can be localized in a single mode [MsPs strategy depicted
in Fig. 1(b)], or delocalized over several modes (mode
entanglement, MePs). We find

FMsPs ≤ FQ½jΨð1Þi ⊗ � � � ⊗ jΨðNÞi; Ĥ� ≤ FMePs: ð3Þ

Here FMePs is the quantum Fisher matrix obtained by
delocalizing each of the particles over all modes according

to the weights pðiÞ
k ¼ hN̂ki=N, where pðiÞ

k ¼ jhΨðiÞjλðiÞkþij2 þ
jhΨðiÞjλðiÞk−ij2 is the probability to find particle i in mode k.
Moreover, FMsPs in Eq. (3) is the quantum Fisher
matrix obtained from fully localized single-particle states,

i.e., pðiÞ
k ¼ δkki such that

P
N
i¼1 δkki ¼ hN̂ki, which is only

defined for integer hN̂ki. In the inequalities (3) we vary only
the distribution of particles amongmodes,while considering
an arbitrary, fixed state preparation within the modes. The
result (3) states that, for pure particle-product states, mode
entanglement generally leads to a higher sensitivity than
strategies based on mode separability.
Both inequalities in (3) become equalities for states

with the property hĥðiÞk ijΨðiÞi ¼ 0 for all k and i and, in this
case, no advantage due to mode entanglement can be
achieved. Optimal states that reach the sensitivity limit (2)
are prepared in a balanced superposition of largest and
smallest eigenstate within the modes, which ensures that

hĥðiÞk ijΨðiÞi ¼ 0. Hence, if hN̂ki is integer, we obtain the
same sensitivity for the optimal MePs states [48]

jΨMePsi ¼ ⨂
N

i¼1

XM
k¼1

ffiffiffiffiffiffiffiffiffiffi
hN̂ki
2N

s
ðjλðiÞkþi þ jλðiÞk−iÞ;

where each particle is delocalized over all modes, and
optimal MsPs states

jΨMsPsi ¼ ⨂
N

i¼1

jλðiÞkiþi þ jλðiÞki−iffiffiffi
2

p ;

where each particle is localized on a single mode ki such
that

P
N
i¼1 δkki ¼ hN̂ki.

Sensitivity bounds for mode-separable states.—Let us
now determine the upper sensitivity limits for general
mode-separable states ρ̂m-sep ¼

P
γpγρ̂1;γ ⊗ � � � ⊗ ρ̂M;γ ,

where ρ̂k;γ is an arbitrary density matrix of mode k. The
state-dependent bound

FQ½ρ̂m-sep; Ĥ� ≤ 4Γ½ρ̂1 ⊗ � � � ⊗ ρ̂M; Ĥ� ð4Þ

holds, where Γ½ρ̂1 ⊗ � � � ⊗ ρ̂M; Ĥ� ¼ diag(ðΔĤ1Þ2ρ̂1 ;…;

ðΔĤMÞ2ρ̂M) is the covariance matrix of the product state
of reduced density matrices ρ̂k ¼

P
γpγρ̂γ;k for the different

modes k [46]. A maximization of the quantum Fisher
matrix over all mode-separable (MS) states with fixed hN̂2

ki
yields

FMS ≡max
ρ̂m-sep

FQ½ρ̂m-sep; Ĥ�

¼

0
BBB@

hN̂2
1i 0 � � � 0

..

. . .
. ..

.

0 � � � 0 hN̂2
Mi

1
CCCA: ð5Þ

This sensitivity limit is thus determined by the fluctuations
of the number of particles in all modes. It should be noticed
that FMS ≥ FSN, since hN̂2

ki ≥ hN̂ki. Mode entanglement is
therefore not necessary to overcome the multiparameter
shot noise.
For a fixed number of particles Nk in each mode, Eq. (5)

reduces to FMS ¼ diagðN2
1;…; N2

MÞ. The bound is satu-
rated by a product of NOON states,

jΨMsPei ¼ ⨂
M

k¼1

jNk;þi þ jNk;−iffiffiffi
2

p ;

with full Nk-particle entanglement in each mode k.
Here jNk;�ik describes Nk particles in the state with
eigenvalue λk�. In the single-parameter case (M ¼ 1), the
notion of entanglement among different parameter-encod-
ing modes does not exist, and strategies with maximal
particle entanglement recover the Heisenberg limit, i.e.,
ðΔθestÞ2 ¼ 1=μN2, achieved by NOON states [6,7].
Furthermore, for fixed Nk, the stepwise enhancement

of sensitivity from the bound FSN for particle-separable
states to the bound FMS involving full particle entanglement
can be probed by deriving bounds for quantum states
with a maximal number of entangled particles [8] in
each mode. Specifically, P-producible states ρ̂P-prod
are those that contain not more than 1 ≤ Pk ≤ Nk
entangled particles in mode k with P ¼ fP1;…; PMg.
We obtain FP

MS ≡maxρ̂P-prodFQ½ρ̂P-prod� with FP
MS ¼

diagðs1P2
1 þ r21;…; sMP2

M þ r2MÞ, where sk ¼ bNk=Pkc
and rk ¼ Nk − skPk. These bounds are saturated by prod-
ucts of sk NOON states of Pk particles and a single NOON
state of rk particles in each mode. In general, we obtain the
hierarchy

FMS ≥ FP
MS ≥ FP0

MS ≥ FSN; ð6Þ

if Pk ≥ P0
k for all k ¼ 1;…;M. We recover FSN for

P ¼ f1;…; 1g, i.e., in the complete absence of particle
entanglement and FMS for P ¼ fN1;…; NMg, i.e., maximal
particle entanglement in each mode.
The multiparameter Heisenberg limit.—In the following,

we identify an ultimate, saturable lower bound on nTΣn for
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arbitrary n, minimized over all quantum states. We first
derive a weak form of the multiparameter CRB and QCRB,

nTΣn ≥
1

μnTFn
≥

1

μnTFQn
; ð7Þ

respectively, where we chose the normalization jnj2 ¼ 1.
The inequalities (7) can be derived without assuming the
existence of the inverse of F and FQ [43]. While Eq. (1) is a
matrix inequality and provides bounds for all possible
nTΣn ¼ Δ2ðPknkθest;kÞ at once, Eq. (7) expresses a bound
for a single, specific, but arbitrary, linear combination of
parameters specified by the vector n [36,37,39]. Since
nTA−1n ≥ ðnTAnÞ−1 holds for all n and all matrices A,
wheneverA−1 exists, the chain of inequalities (7) is weaker
than (1). This also means that saturation of the weak bound
(7) implies saturation of (1) whenever it exists.
The state-dependent bound FQ½ρ̂; Ĥ� ≤ 4Γ½ρ̂; Ĥ� holds

for arbitrary quantum states ρ̂, where Γ½ρ̂; Ĥ� is the full
covariance matrix. Furthermore, an achievable upper limit
on the covariances is given as nTΓ½ρ̂; Ĥ�n ≤ nTΓn½ρ̂; Ĥ�n
for arbitrary n, where Γn½ρ̂; Ĥ� ¼ vnρ̂v

nT
ρ̂ , and vnρ̂ is a vector

with elements ϵkðΔĤkÞρ̂, for k¼1;…;M and ϵk ¼ sgnðnkÞ.
Maximizing over all quantum states with fixed hN̂2

ki yields
nTFn

HLn≡maxρ̂nTFQ½ρ̂; Ĥ�n with

Fn
HL¼

0
BBB@

hN̂2
1i ��� ϵ1ϵM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN̂2

1ihN̂2
Mi

q
..
. . .

. ..
.

ϵ1ϵM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN̂2

1ihN̂2
Mi

q
��� hN̂2

Mi

1
CCCA; ð8Þ

where subscript HL represents the Heisenberg limit. Notice
that Eq. (8) can be written as Fn

HL ¼ vnvnT , where vn ¼
ðϵ1

ffiffiffiffiffiffiffiffiffiffi
hN̂2

1i
q

;…; ϵM

ffiffiffiffiffiffiffiffiffiffiffi
hN̂2

Mi
q

Þ. Fn
HL is a singular rank-one

matrix that cannot be inverted: this implies that the multi-
parameter Cramér-Rao bound (1) is not defined, while its
weaker form (7) is.
The multiparameter Heisenberg limit is defined on

the basis of Eqs. (7) and (8) as nTΣn ≥ nTΣn
HLn≡

ðμnTFn
HLnÞ−1, and is saturated by the states

jΨn
MePei ¼

1ffiffiffi
2

p ðjN1; ϵ1i ⊗ jN2; ϵ2i ⊗ … ⊗ jNM; ϵMi

þ jN1;−ϵ1i ⊗ jN2;−ϵ2i ⊗ … ⊗ jNM;−ϵMiÞ;
ð9Þ

for arbitrary n. Both the states (9) and the matrix (8) depend
on the sign of the components of n. The states (9) contain
entanglement among all modes and among all of the Nk
particles in each mode. In the single-mode case (M ¼ 1)

this reduces to the standard NOON state and we again
recover the Heisenberg limit ðΔθestÞ2 ¼ 1=μN2.
Sensitivity bounds for separability among specific

modes.—To probe the transition from complete mode
separability to full M-mode entanglement, we derive
bounds for quantum states that contain entanglement only
between specific subsets of the M modes. States that are
mode separable in the partition Λ ¼ A1j…jAL, where
the Am describe groups of modes, can be written as
ρ̂Λ-sep ¼

P
γpγρ̂γ;A1

⊗ … ⊗ ρ̂γ;AL
, with density matrices

ρ̂γ;Am
on Am. Following [47,49], we obtain the state-

dependent upper bound

FQ½ρ̂Λ-sep; Ĥ� ≤ 4Γ½ρ̂A1
⊗ � � � ⊗ ρ̂AL

; Ĥ�;

where ρ̂Am
¼ P

γpγρ̂γ;Am
is the reduced density matrix for

Am. This matrix is obtained from the full covariance matrix
Γ½ρ̂Λ-sep; Ĥ� by removing all off-diagonal elements that
describe correlations between the Am, while retaining the
correlations within each of the Am.
By combining the methods used for the derivation of

Eqs. (4) and (8), the sensitivity limits Fn
Λ for the states ρ̂Λ-sep

can be obtained. The result is obtained from Fn
HL by setting

to zero the off-diagonal elements that describe mode
correlations across different groups Am. These matrices
interpolate between the sensitivity limits of fully M-mode
entangled states Fn

HL and fully mode-separable states FMS.
This is expressed by the hierarchy

nTFn
HLn ≥ nTFn

ΛA
n ≥ nTFn

ΛB
n ≥ nTFMSn; ð10Þ

which holds for all n and any pair of partitionsΛA,ΛB, such
that the subsets in ΛA can be obtained by joining subsets of
ΛB. The sensitivity Fn

Λ can be reached by mode products of
states of the form (9) for each of theAm. For a fixed number
of particles, the lowest (fully mode separable) bound in (10)
constitutes the largest bound in the hierarchy (6) as a
function of the number of entangled particles.
Enhancement of sensitivity by multimode and multi-

particle entanglement.—The role of mode entanglement for
quantum multiparameter estimation has been studied inten-
sively over recent years [29–39]. No general consensus on
the possible advantage of mode entanglement has been
reached. Many studies have focused their analysis on the
sum

P
M
k¼1ðΔθest;kÞ2 of single-parameter sensitivities or the

weighted sum
P

M
k¼1 w

2
kðΔθest;kÞ2 with wk ≥ 0. Both these

figures of merit ignore possible correlations between the
parameters and lead to the result that mode correlations can
only have a detrimental influence on the sensitivity. This
can be seen by taking the trace on the QCRB (1),P

M
k¼1ðΔθest;kÞ2 ≥

P
M
k¼1ðF−1

Q Þkk, which is always larger
or equal to the sum of single-parameter sensitivitiesP

M
k¼1ðFQÞ−1kk (see, e.g., [45]). Mode entanglement estab-

lishes correlations that can lead to an enhancement of phase
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sensitivity only when considering a figure of merit that
includes the covariances among the parameters. This
possibility is fully accounted for when studying bounds
for Σ in full matrix form, as done in this Letter.
The figure of merit nTΣn ¼ P

M
kl¼1 nknlCovðθest;k; θest;lÞ

may include covariances between the parameters, in addi-
tion to the weighted sum of single-parameter variances. Let
us illustrate the quantum gain due to multimode and multi-
particle entanglement in (7) using the example of an equally
weighted linear combination of parameters, jnkj ¼ 1=

ffiffiffiffiffi
M

p
with arbitrary signs, and an equal and integer number of
Nk ¼ N̄ ¼ N=M particles in each mode. We determine the
maximal sensitivity Smax

Me;Pe
¼ maxρ̂Me;Pe

nTFQ½ρ̂Me;Pe
; Ĥ�n

for quantum states ρ̂Me;Pe
with up to Pe ≤ N=M entangled

particles in each mode and up toMe ≤ M entangled modes.
Notice that Pe ¼ 1 does not necessarily imply full
particle separability since it only demands that there is no
entanglement among the particles that enter the same
mode. If additionally Me ¼ 1, we have a fully mode-
and particle-separable state with shot-noise sensitivity
Smax
1;1 ¼ N. The gain factor GMe;Pe

¼ Smax
Me;Pe

=Smax
1;1 ¼

ðsP2
e þ r2ÞðuM2

e þ v2Þ=ðNMÞ expresses the largest achiev-
able quantum enhancement over the shot-noise limit,
where s ¼ bN̄=Pec, r ¼ N̄ − sPe, u ¼ bM=Mec, and v ¼
M − uMe. Special cases of interest are given by

G1;1 ¼ 1; G1;N̄ ¼ N̄;

GM;1 ¼ M; GM;N̄ ¼ N̄M:

We observe that local particle entanglement in each mode
can achieve an enhancement of up to N̄ (corresponding to the
number of entangled particles per mode), while mode
entanglement can increase the sensitivity by a factor of M
(corresponding to the number of entangled modes). By
combining both, we can achieve a gain factor up to N̄M.
Finally, we remark that our results can be extended to

provide bounds on more general figures of merit TrfWΣg,
where W ≥ 0 is an arbitrary weight matrix. The sensitivity
bounds and optimal states are obtained by performing a
mode transformation that diagonalizes the matrix W [43].
Conclusions.—We identified sensitivity bounds and

optimal states for the simultaneous estimation of multiple
parameters in multimode interferometers and characterized
the interplay between mode and particle entanglement. Our
bounds are given in terms of the full Fisher matrix and are
valid for any linear combination of estimators taking into
account correlations between parameters. In particular, this
led to the identification of the multiparameter shot-noise
limit in matrix form—corresponding to the maximum
sensitivity achievable by particle-separable states—and
the Heisenberg limit—corresponding to the maximum
sensitivity achievable for any probe state. Particle entan-
glement is thus necessary to overcome the multiparameter
shot-noise limit with a fixed number of probe particles.

When correlations between the parameters are present, the
multiparameter sensitivity further grows with the number of
entangled modes. This reveals the possibility to achieve a
collective quantum enhancement for the estimation of
multiple parameters beyond an optimized point-by-point
estimation of individual parameters.
Our results build the foundation for the development of

genuine quantum technological strategies in applications
that rely on the precise acquisition of an ensemble of
parameters, such as sensing of spatially distributed fields
and imaging techniques. Experimental realizations are
possible with existing technology in a wide range of atomic
and photonic systems that provide coherent access to
multiple modes (see, e.g., [5,20,25,26,33,49]).
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