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Interaction among harmonic oscillators described by a trilinear Hamiltonian ℏξða†bcþ ab†c†Þ is one of
the most fundamental models in quantum optics. By employing the anharmonicity of the Coulomb
potential in a linear trapped three-ion crystal, we experimentally implement it among three normal modes
of motion in the strong-coupling regime, where the coupling strength is much larger than the decoherence
rate of the ion motion. We use it to simulate the interaction of an atom and light as described by the Tavis-
Cummings model and the process of nondegenerate parametric down-conversion in the regime of a
depleted pump.
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The system of three quantum harmonic oscillators where
a quantum in a mode is down-converted into two quanta in
other two modes is a cornerstone model in many branches
of physics [1], including quantum optics and quantum
information science [2,3]. It describes physical processes
ranging from Raman or Brillouin scattering [4], nonde-
generate parametric down-conversion of light in a nonlinear
medium [5], operation of an absorption refrigerator [6–9] to
a zero-dimensional model of Hawking radiation [10] and
is equivalent to the widely used Tavis-Cummings model
[11–14], which describes the interaction of a radiation field
with N two-level atoms.
Weak coupling between the modes of light can be easily

achieved with nonlinear crystals and is commonly used, for
example, to generate entangled photon pairs [5]. It is
widely exploited in the experiments such as the demon-
stration of the Einstein-Podolsky-Rosen paradox [15], the
generation of two-mode squeezing [16], and the realization
of frequency-entangled photon pair spectroscopy [3,17,18].
The nondegenerate parametric interaction has also been
recently realized in electro- or optomechanical systems
[19–24] and superconducting circuits [25–29]. An analo-
gous interaction of hybrid light-matter quasiparticles is
proposed to convert a Raman laser into an optical para-
metric oscillator and create an all-optical switch [30].
Currently, a Raman-like coupling among three harmonic
oscillators is demonstrated [31] in graphene membranes via
the tension-mediated nonlinear interaction [32,33].
However, a strong interaction at the level of single quanta
remains a challenge and is required for applications in
quantum computation and quantum simulations [2].
In this Letter, we experimentally demonstrate the non-

degenerate parametric interaction between mechanical
modes of motion in the system of trapped ions in the fully
quantum regime. We consider three identical ions of mass
m and electric charge e that are aligned along the axial z

direction of a rf-Paul trap with the single-ion trapping
frequencies ωx, ωy, and ωz. The size of the trap (∼mm) is
much larger than the length scale of the ion crystal (∼μm),
such that the trap is well approximated by a harmonic
potential [34]. Considering also the Coulomb interaction
between the ions, we can write the total potential energy as

V¼m
2

X3

n¼1

ðω2
xx2i þω2

yy2i þω2
zz2i Þþ

X3

n;k¼1
n≠k

e2

8πϵ0jr⃗n− r⃗kj
; ð1Þ

where r⃗i ¼ ðxi; yi; ziÞ denotes the position of the ion i and
ϵ0 is the dielectric permittivity of the vacuum.
The motion of three ions in the trap in the harmonic

approximation is decomposed into a set of independent
normal modes: The motion along each trap axis is
described by the center-of-mass mode with the eigenvector
ecm ¼ ð1; 1; 1Þ= ffiffiffi

3
p

, the “tilt” mode et ¼ ð−1; 0; 1Þ= ffiffiffi
2

p
,

and the “zigzag” mode ez ¼ ð−1; 2;−1Þ= ffiffiffi
6

p
. However,

anharmonicity of the Coulomb interaction Eq. (1) can be
significant even at the spatial extent of the single-ion wave
packet in the motional ground state (∼10 nm), which
induces nonlinear coupling between the normal modes
for the oscillator energies on the order of single quanta.
Symmetry and energy conservation restrict the set of

modes that can be coupled. The center-of-mass modes
cannot be coupled to any other modes, since they are purely
determined by the trap potential and do not depend on the
Coulomb interaction between the ions. We fulfill the energy
conservation condition by particularly tuning the mode
frequencies to

ωa ¼ ωb þ ωc; ð2Þ
where ωb ≠ ωc. When ωz ¼ 0.556ωx, this condition is
satisfied for the axial zigzag mode with the frequency
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ωa ¼
ffiffiffiffiffiffiffiffiffiffi
29=5

p
ωz and the tilt and the zigzag modes along the

x-radial direction with the frequencies ωb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
x − ω2

z

p

and ωc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
x − 12ω2

z=5
p

, respectively [see Fig. 1(a)].
After rewriting Eq. (1) in the normal-mode coordinates,

we obtain the Hamiltonian using the rotating wave approxi-
mation near the resonance condition Eq. (2) as [35]

H ¼ ℏωaa†aþ ℏωbb†bþ ℏωcc†cþ ℏξða†bcþ ab†c†Þ:
ð3Þ

Here, a (a†), b (b†), and c (c†) are the annihilation
(creation) operators for the corresponding normal modes
of motion, ξ ¼ 9ω2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωaωbωc

p
=5z0 is the coupling

rate, and z0 ¼ ð5e2=16πϵ0mω2
zÞ1=3 is the distance between

neighboring ions.
In our experimental setup, three ytterbium ions 171Ybþ

are trapped in a standard four-rod Paul trap [36–38]
with the single-ion trapping frequencies ðωx;ωy;ωzÞ ¼
2π × ð1056; 976; 587Þ kHz. Two of the ions are optically
pumped [37] into the metastable 2F7=2 state with a lifetime
of about 5 yr [39]. Because of collisions with the

background gas (the vacuum pressure is
∼2×10−11mbar), the experimentally measured lifetime
of the 2F7=2 state in our setup is around 15 min, long
enough to eliminate the interaction between these dark ions
and the laser beams throughout a single experiment
(∼100 ms). The remaining bright ion is positioned at the
edge of the crystal for the state preparation and detection of
the collective motional modes [38,40], and its position is
monitored with an electron-multiplying CCD camera. Once
we find the bright ion in the middle of the crystal, we
interrupt the rf signal sent to the trap for a few microsec-
onds to let the ion crystal melt and recrystallize. We repeat
this process until the bright ion moves to the edge of the
crystal [38].
Each of the motional modes is initialized to the ground

state (> 95% occupancy) by Doppler cooling followed
by sideband cooling at the detuning (δ ¼ ωa − ωb − ωc ¼
−2π × 44 kHz) that is much larger than the coupling
strength ξ. The sideband cooling is achieved by driving
Raman transitions via the ion internal hyperfine states
j2S1=2;F¼1;mF¼0i≡ j↑i and j2S1=2;F¼0;mF¼0i≡ j↓i
with the energy difference of 12.6 GHz. The Raman beams,
each with a repetition rate of 76.2 MHz and an average

(a)

(d)

(b)

(c)

FIG. 1. Trilinear mode coupling. (a) One axial and two radial modes of motion involved in the experiment. Two ions (black) are optically
pumped into the metastable 2F7=2 state and remain there during the experiment. (b) Probability to drive an axial-mode blue sideband
transition as a function of Raman detuning (vertical axis) and three-mode detuning δ (horizontal axis), after all three motional modes are
prepared in the ground state. Solid lines are the eigenvalues of the Hamiltonian Eq. (3), and jna; nb; nci are the eigenstates in the far-
detuned limit with na, nb, and nc phonons in mode a, b, and c, respectively. Inset: The on-resonance vacuum Rabi splitting measured in the
spectrum of the axial-mode blue sideband. (c) The coherent energy exchange between three modes of motion. The purple, red, and blue
dots represent the probabilities to measure the ion in state j↑i after applying the corresponding red sideband π pulse to the axial zigzag
(ωa ¼ 1414 kHz), the radial tilt (ωb ¼ 878 kHz), and the radial zigzag (ωc ¼ 536 kHz) modes, respectively, as functions of the
interaction time τ. The purple, red, and blue lines are the corresponding sinusoidal or cosinusoidal fits. (d) The oscillation amplitude
determined by fitting the three oscillation curves in (c) with a sinusoidal (cosinusoidal) fit function and averaging their amplitudes.
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power of 80 mW at a central wavelength of 374 nm, are
generated by frequency doubling a mode-locked pico-
second Ti:sapphire laser [36–38,41].
To detect the state of the motional mode, we couple it to

the ion internal state by driving red (j↓ijni → j↑ijn − 1i)
or blue (j↓ijni → j↑ijnþ 1i) motional sidebands [34],
where the second ket state corresponds to the ion motional
state in the Fock basis. The internal state of the ion is then
detected using the standard fluorescence techniques [40].
The interaction term of the Hamiltonian in Eq. (3) mixes

the bare energy eigenstates and gives rise to the vacuum
Rabi splitting. To verify this, after all the motional modes
are cooled to the ground state, we bring the mode detuning
δ to zero in around 20 μs by applying a bias voltage to
the diagonally opposite electrodes of the ion trap [37]. The
sweeping speed is chosen to be much faster than the
coupling rate ξ, such that the phonons in the axial and radial
motional modes are well defined during the sweeping, but
slower than the mode frequencies ωi so that no additional
motional excitations are observed. We then probe the
blue sideband of the axial mode and find two peaks with
equal linewidths, as shown in the inset in Fig. 1(b). The
splitting Δωa ¼ 2π × 2.96ð3Þ kHz reveals the coupling
rate, and it is close to the theoretically expected value
2h011jHj100i=2πℏ ¼ ξ=π ¼ 2.767 kHz. The discrepancy
can be attributed to the uncertainty of the detuning δ. A
further detuning scan near the resonance condition Eq. (2)
resolves an avoided crossing, as shown in Fig. 1(b).
Another signature of the cross-mode coupling is the

coherent energy exchange between different modes under
the resonance condition. We start with one phonon in the
axial mode and zero phonon in both radial modes [38] and
then prepare the ion in the j↓i state using optical pumping
[40]. We adjust the detuning to δ ¼ 0 (resonance) and wait
for the system to interact for time τ. Then we set the
detuning back to its initial value δ ¼ −2π × 44 kHz and
probe the population of modes a, b, or c by applying a red
sideband π pulse. This pulse drives a j↓ij1i → j↑ij0i
transition if the motional mode was initially in the state
j1i and leaves the internal state unchanged if the mode was
in state j0i. Finally, we detect the internal state of the ion
[40]. The observed oscillations of the ion internal state as
functions of the interaction time τ [see Fig. 1(c)] demon-
strate a coherent energy exchange between the axial
and the two radial modes. The oscillation frequency is
2.801(2) kHz, consistent with the theory. The amplitude of
oscillations in Fig. 1(c) reduces by 1=e after interaction
time τ ¼ 0.11ð2Þ s, as shown in Fig. 1(d), which corre-
sponds to about 300 oscillation cycles.
The Hamiltonian in Eq. (3) in the strong-coupling

regime has a rich structure that allows the simulation of
diverse classes of physical phenomena. By introducing
Schwinger’s oscillator scheme [42,43], Jz¼ða†a−bb†Þ=2,
J− ¼ ab†, and Jþ ¼ a†b, this Hamiltonian can be rewritten
as [13,14,44]

H ¼ ℏωcðc†cþ JzÞ þ ℏξðc†J− þ cJþÞ: ð4Þ

This Hamiltonian is formally equivalent to the Tavis-
Cummings model [12], which describes the coherent
interaction of a quantized single-mode light field c with
an ensemble of identical spin 1=2 atoms. Here we use
na ¼ a†a and nb ¼ b†b, i.e., the phonon numbers in the
axial zigzag and the radial tilt modes, to simulate the
numbers of spin-up and spin-down atoms, respectively, and
J is the operator of the collective spin of the atoms.
As a proof of principle, we simulate the Jaynes-

Cummings model, which is a specific case of the Tavis-
Cummings model. We prepare a one-phonon state in mode
a and a vacuum state in mode b, which corresponds to a
system consisting of one spin-1=2 atom in the spin-up state,
while the mode c that simulates the quantized light field is
prepared in either Fock or coherent states. After letting the
system evolve for time τ, we apply red sideband π pulses to
modes a and b followed by ion internal state detection [40].
The result is shown in Fig. 2. If mode c is initially prepared
in the Fock states, we observe the periodic oscillations
between ion internal state j↑i and j↓i [see Fig. 2(a)]. It
represents the phonon population oscillations in both
modes a and b, which corresponds to the Rabi oscillations
of the atom interacting with the Fock-state light mode. The
frequencies of the oscillations increase with the phonon
number in c mode as Ωn=2π ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ξ=2π, as shown in

the inset in Fig. 2(a). If the field mode is initially prepared
in a coherent state with the population distribution
pn ¼ e−n̄n̄n=n!, it leads to the collapses and revivals of
the atomic Rabi oscillations as shown in Fig. 2(b). In both
cases [Fig. 2(a) and 2(b)], populations of the axial zigzag
and the radial tilt modes are anticorrelated, because the
operator for the number of atoms N ¼ na þ nb commutes
with the total Hamiltonian Eq. (3).
The motional state preparation and the mapping of

the motional state to the ion internal state are not perfect.
They are both limited by the power fluctuations and the
pointing stability of the Raman beams. Together with
the infidelity of the detection of the ion internal state
[40], they lead to the reduced visibility of the oscillations in
Figs. 1(c), 1(d), and 2.
It is worth mentioning that the coherence time of the

simulation of the Jaynes-Cummings model here is much
longer than that previously demonstrated in cavity QED
[46] or in trapped-ion system using the spin-motion
coupling [45]. Together with the rich toolboxes of prepar-
ing and controlling both the internal and the motional states
of the trapped ions, especially the capability to determin-
istically prepare motional states with a high number of
phonons [47], the established correspondence offers a
platform to simulate other aspects of the Tavis-
Cummings model, including, for example, the preparation
of the superradiant state [11,13].
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Another physical process that can be simulated with the
Hamiltonian [Eq. (3)] is the nondegenerate parametric
down-conversion. Because of the long coherence time of
the motional states and the strong nonlinearity in the
trapped-ion system, we are able to simulate this process
in the regime of a depleted pump. We prepare mode a in the
coherent state with n̄ ¼ 3.7ð2Þ and two other modes b and c
in the vacuum state. After interaction time τ, we drive the
blue motional sideband of each of the three motional modes
and reconstruct the corresponding phonon number distri-
bution by performing the Fourier transform of the ion
internal state temporal evolution [34,45]. The reconstructed
phonon number distributions in each mode for different
interaction times are shown in Fig. 3. If the interaction time
is small, the phonon number distributions in modes b and c
resemble that of a thermal state, similar to the weak

nonlinearity with a strong pump [5]. As the interaction
time increases, the state of modes b and c significantly
deviates from the thermal state.
Such behavior was also predicted in Ref. [10] in a simple

zero-dimensional model of Hawking radiation [48]. The
black hole, represented by mode a here, releases pairs of
particles on opposite sides of the event horizon. One
particle escapes from the black hole while the other falls
back, emulated by mode b and c, respectively. Initially, the
emitted mode obeys thermal statistics. Our observation of a
deviation from thermal statistics later lends credence to the
view that Hawking radiation might be entangled with the
quantum states of the black hole and contain information.
In conclusion, we demonstrate the trilinear interaction of

harmonic oscillators with a trapped-ion system at the single
quanta level and use it to simulate the Tavis-Cummings
model and the nondegenerate optical parametric down-
conversion. The latter also sheds some light on the
information-loss problem of the black hole. It offers a
broad platform for the field of quantum thermodynamics,
including, for example, the simulation of the absorption
refrigerator [6–9] and the study of the role of entanglement

FIG. 3. Simulation of the nondegenerate parametric down-
conversion in the depleted-pump regime. The upper, middle, and
lower figure panels show the temporal evolutions of the recon-
structed phonon number distributions (see the main text) of the
axial zigzag, the radial tilt, and the radial zigzag modes,
respectively. The solid lines are the calculated phonon number
distributions using Hamiltonian Eq. (3) with the axial zigzag
mode initially in a coherent state with n̄ ¼ 3.7 and the radial tilt
and the radial zigzag modes both in a vacuum state.

FIG. 2. Simulations of the Tavis-Cummings model. Before the
system is brought into resonance for interaction, the axial zigzag
and the radial tilt modes are initially both prepared in a vacuum
state and the radial zigzag mode in (a) the Fock state j1i and
(b) the coherent state with the average phonon number
n̄ ¼ 1.8ð1Þ. The red (blue) dots represent the probabilities to
find the ion in j↑i after applying a red sideband π pulse to the
axial zigzag (radial tilt) mode as a function of interaction time τ,
while the red (blue) lines show the corresponding fits. The inset in
(a) shows the extracted Rabi oscillation frequency from the fits as
a function of the phonon numbers in the radial zigzag mode Fock
states. The orange dots are the experimental data, and the orange
line is the theoretical prediction Ωn=2π ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ξ=2π. The

extracted n̄ ¼ 1.8ð1Þ in (b) from the fits, assuming a Poisson
phonon number distribution, is consistent with an independent
phonon number calibration [38,45]. The oscillations in this figure
correspond to the Rabi oscillations of the initially excited atom
interacting with a light field (see the main text).
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and the emergence of quantum statistical behavior in an
isolated few-body system [49,50].
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