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A key quantity in strongly interacting resonant Fermi gases is the contact C, which characterizes
numerous properties such as the momentum distribution at large momenta or the pair correlation function at
short distances. The temperature dependence of C was measured at unitarity, where existing theoretical
predictions differ substantially even at the qualitative level. We report accurate data for the contact and the
momentum distribution of the unitary gas in the normal phase, obtained by bold diagrammatic Monte Carlo
and Borel resummation. Our results agree with experimental data within error bars and provide crucial
benchmarks for the development of advanced theoretical treatments and precision measurements.
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The resonant Fermi gas is a fundamental model of
quantummany-body physics. It features a smooth crossover
between fermionic and bosonic superfluidity, as predicted in
the context of condensed matter physics [1–4] and con-
firmed by remarkable experiments on ultracold atomic
Fermi gases near Feshbach resonances [5]. It is also relevant
to neutron matter [6,7] and high-energy physics [8], par-
ticularly in the central region of the crossover, around the
unitary point where the scattering length diverges. As a
result of the vanishing interaction range, resonant Fermi
gases feature characteristic ultraviolet singularities gov-
erned by a single quantity called contact [4,9–12]. In
particular, for the homogeneous gas, the density-density
correlation function at short distance diverges as

hn̂↑ðrÞn̂↓ð0Þi ∼
r→0

C
ð4πrÞ2 ; ð1Þ

and the momentum distribution has the tail

nσðkÞ ∼
k→∞

C
k4

: ð2Þ

HereC is the contact per unit volume, n̂σðrÞ ¼ ψ̂†
σðrÞψ̂σðrÞ is

the density operator, and the spin-σ momentum distribution
nσðkÞ is normalized to

R
nσðkÞd3k=ð2πÞ3 ¼ nσ ¼ hn̂σðrÞi.

A direct manifestation of Eq. (1) is that in a unit volume, the
number of pairs of fermions separated by a distance smaller
than s is Cs=ð4πÞ in the s → 0 limit. Hence C controls the

(anomalously high) density of pairs with vanishing inter-
particle distance [9,11,13].
A large variety of experimentally studied observables are

directly expressible in terms of the contact: the population of
the closed channel molecular state measured by laser
molecular spectroscopy [14,15], the large-momentum tail
of the static structure factormeasured byBragg spectroscopy
[16–18], the tail of the momentum distribution measured by
noninteracting time of flight or bymomentum-resolved radio
frequency spectroscopy [19], the derivative of the energy
with respect to the inverse scattering length [10] extracted
from the pressure equation of state measured by in situ
imaging [20], the large-frequency tail in radio frequency
spectroscopy [19,21–23], and the short-distance density-
density correlation function extracted from the three-body
loss rate in the presence of a bosonic cloud [24].
The experimental study [22] is particularly important

because it is spatially resolved and for the first time yields
the temperature dependence of the contact for a homo-
geneous system. Recently, two other experimental groups
have presented preliminary data for the temperature-
dependent homogeneous contact [25]. Understanding the
experimental data remains a major challenge, because
existing theoretical predictions, based on lowest order
skeleton Feynman diagrams [26–28] or Monte Carlo sim-
ulations on a lattice [29,30] contradict each other even at
the qualitative level, especially on approach to the super-
fluid transition from the normal side.
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In this Letter, we present high precision results for the
contact of the unitary Fermi gas in the normal phase. We
employ the bold diagrammatic Monte Carlo (BDMC)
technique, in which all skeleton Feynman diagrams are
sampled stochastically up to a maximal order Nmax [31],
and convergence towards the exact result in the limit
Nmax → ∞ is obtained by applying an appropriate con-
formal-Borel resummation to the divergent diagrammatic
series [32]. Our results agree with experimental data within
the uncertainty limits, and establish that the contact is a
slowly decreasing function of temperature at fixed density
in the normal phase. Furthermore, we observe a non-Fermi
liquid behavior in the momentum distribution.
We directly extract the contact from the pair propagator

Γ thanks to the relation

C ¼ −Γðr ¼ 0; τ ¼ 0−Þ; ð3Þ
(we set ℏ and m to unity). While this relation was
first obtained within T-matrix approximations [28,33,34],
it actually becomes exact once Γ is fully dressed.
Physically, this relation is consistent with the interpretation
of C in terms of a density of pairs, since it is formally
analogous to the relation nσ ¼ Gσðr ¼ 0; τ ¼ 0−Þ between
the single-particle density and the single-particle propaga-
tor G. A simple way to derive Eq. (3) is to use the
regularized version of Eq. (1) which holds in a lattice
model [35],

C ¼ g20hn̂↑ð0Þn̂↓ð0Þi; ð4Þ
i.e., the contact is equal to the double occupancy, up to a
renormalization factor set by the bare coupling constant g0
(see also Ref. [13]). The result (3) then follows from the
fact that

Γðr; τÞ ¼ g0δðτÞ
δr;0
b3

− g20hTðψ↓ψ↑Þðr; τÞðψ†
↑ψ

†
↓Þð0; 0Þi;

ð5Þ
or, diagrammatically,

ð6Þ

Here, T½…� is the time-ordered product, and the first term
does not contribute in the continuum limit where the lattice
spacing b tends to zero.
Most results presented below were obtained using the

bold scheme, where diagrams are built self-consistently
from fully dressed propagators G and Γ; when the temper-
ature is not too low, we can alternatively use the non-
self-consistent ladder scheme, where diagrams are built
from the noninteracting G0 and ladder-sum Γ0 [32,36,37].
By scale invariance, Cλ4 is a universal function of βμ,
with μ the chemical potential, β ¼ ðkBTÞ−1 the inverse

temperature, and λ ¼ ffiffiffiffiffiffiffiffi
2πβ

p
the thermal wavelength. We

have cross-checked the bold scheme against the ladder
scheme at βμ ¼ 0, finding a relative difference for Cλ4

smaller than 10−4, well within the error bars. We typically
went up to diagram order Nmax ¼ 9 [38]. Without resum-
mation, the bold scheme with Nmax ¼ 1 coincides with the
self-consistent T-matrix approximation of Refs. [27,39],
and the ladder scheme with Nmax ¼ 0 coincides with the
non-self-consistent T-matrix approximation of Ref. [26].
The nonresummed results oscillate wildly as a function of
Nmax, which illustrates the absence of a small expansion
parameter—e.g., at βμ ¼ 0 for the ladder scheme, Cλ4

changes by a factor ≈2 between Nmax ¼ 5 and 6. We went
down to T=TF ≈ 0.19, about 10% above the transition
temperature to the superfluid phase Tc=TF ≈ 0.17 [40,41].
Approaching closer to Tc requires tricks to stabilize the
bold self-consistency loop, which we leave for future work.
Our results in the high-temperature region are shown in

Fig. 1, together with the virial expansion

Cλ4 ¼ 16π2ðc2e2βμ þ c3e3βμ þ � � �Þ: ð7Þ

The coefficients c2 ¼ 1=π [42] and c3 ¼ −0.1399ð1Þ
[43–45] come from the two-body and three-body problem,
respectively.
The behavior of the contact in the low-temperature

region of the normal phase is displayed in Fig. 2. The
contact in terms of canonical variables, Cðn; TÞ or, equiv-
alently, C=k4F versus T=TF, is shown in Fig. 2(a). We find a
remarkably weak temperature dependence, which results
from a compensation between two competing effects, as we
will see from the momentum distribution below. The
difference between the experimental results of Ref. [22]
and our data is on the order of the experimental error bars,
and the sign of this difference is essentially constant, which
indicates that the experimental error is mostly systematic

 1
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FIG. 1. The contact obtained by diagrammatic Monte Carlo
simulations (circles with error bars) agrees with the virial
expansion [42,43] at order two (dashed line) and three (solid
line) in the high-temperature limit βμ → −∞.
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rather than statistical. The lattice auxiliary-field quantum
Monte Carlo (AFQMC) data of Ref. [29] disagree with our
results and predict an opposite temperature dependence;
this may be due to a lack of control over systematic errors,
whose main source is believed to be the discretization of
space (i.e., the finite filling factor) [29]. The determinantal
diagrammatic Monte Carlo (DDMC) data of Refs. [30,46]
have a nonmonotonic temperature dependence which may
also be an artifact of space-discretization errors, even
though continuous-space extrapolation was performed.
The data point at Tc from Ref. [46] (open square in
Fig. 2) in combination with our data indicate that the slope
jdðC=k4FÞ=dðT=TFÞj, which is much smaller than unity in
the region 0.19≲ T=TF ≲ 1, quickly increases to values
≳1 on approach to the critical temperature [47]. This
change of behavior may be related to the critical behavior
[48]. The non-self-consistent T-matrix results of Ref. [26]

and the Nozières Schmitt-Rink results of Ref. [28] predict a
more pronounced and gradual enhancement of the contact
when decreasing temperature, which was interpreted in
Ref. [26] as a manifestation of pseudogap physics. Our data
demonstrate that this behavior is an artifact of the non-self-
consistent T-matrix approach. The self-consistent T-matrix
results of Ref. [27] are remarkably close to our data in
Fig. 2(a). In Fig. 2(b) we show the contact in terms of grand
canonical variables Cðμ; TÞ or, equivalently, C=μ2 versus
βμ. It is natural to use these variables to discuss the different
diagrammatic results since the diagrammatic technique is
formulated in the grand-canonical ensemble. In this sense,
the function Cðn; TÞ is a combination of Cðμ; TÞ and of the
equation of state nðμ; TÞ, given for each of the considered

(a) (b)
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FIG. 2. Temperature dependence of the contact in the low-temperature region of the normal phase, in terms of (a) canonical and
(b) grand canonical variables. BDMC (this work): blue solid circles, JILA experiment [22]: brown solid diamonds, lattice AFQMC
simulations [29]: gray crosses, lattice DDMC with continuous-space and thermodynamic-limit extrapolations [30,46]: green squares.
The curves correspond to different diagrammatic approximations: non-self-consistent T-matrix [26]: dashed black line, self-consistent
T-matrix [27]: solid red line, Nozières-Schmitt-Rink [28]: dotted green line in (a) and dashed black line in (b). The transition point to the
superfluid phase [40,41] is indicated by the green arrow.

FIG. 3. Leading diagrammatic contribution to the momentum
distribution nσðkÞ at large k, which can be interpreted physically
as the simultaneous propagation of two opposite-spin particles of
large and nearly opposite momenta and of a missing pair of lower
momentum p ≪ k. Imaginary time runs from right to left. The
single-particle lines propagate forward in time and can be
replaced by vacuum propagators. The pair propagator runs
backwards in time and is fully dressed.
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βμ = 2.25 [T/TF = 0.19]
βμ = 0 [T/TF = 0.64]

FIG. 4. BDMC data for the momentum distribution nσðkÞ,
multiplied by k4 in order to reveal the large-momentum tail
nσðkÞ ∼ C=k4. Dotted horizontal lines: values of the contact C
computed directly from the pair propagator. The uncertainties are
represented by the gray error bands.
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approaches in Refs. [32,51–53]. The non-self-consistent
T-matrix and Nozières-Schmitt-Rink approaches yield the
same result for Cðμ; TÞ [derivable from Eq. (3) by replacing
the exact Γ with the sum of the ladder diagrams built on
ideal-gas propagators], featuring again a strong enhance-
ment at low temperature in disagreement with our results.
The self-consistent T-matrix data follow the same trend as
ours up to a difference of about 20%. This difference
largely cancels out with the difference in nðμ; TÞ when one
considers Cðn; TÞ as in Fig. 2(a).
We turn to the momentum distribution, and begin with

an analytic observation. The tail of the momentum dis-
tribution comes exclusively from the diagram of Fig. 3.
Contributions from higher-order diagrams are suppressed,
because integrations over internal times are restricted to
narrow ranges, G and Γ being narrow functions of time at
large momentum. The corresponding asymptotic behavior
of the self-energy is [54,56]

Σðk; τÞ ≃ Ceϵkτ; k → ∞; τ → 0−: ð8Þ

This analytical understanding is readily incorporated into
our BDMC scheme. The C=k4 tail of the momentum
distribution is automatically built in provided we evaluate
the lowest order self-energy diagram with high precision.
To do so, we do not use Monte Carlo sampling, but
rather the numerical procedure of Ref. [39], the only
essential difference being that in our case, the pair
propagator Γ which enters the numerical procedure is
the fully dressed one.
The momentum distribution times k4 is shown in Fig. 4

for two different temperatures. The large-momentum tail is
reproduced without k-dependent statistical noise—in sharp
contrast to other Monte Carlo methods [29,58]—and
perfectly agrees with our value of the contact determined
from Eq. (3). One can note that the C=k4 tail contains as
much as 10% to 15% of the particles. Finally, the
momentum distribution at four different temperatures is

shown in Fig. 5. The temperature dependence of nσðkÞ is
rather weak for the lowest three temperatures, but there is
no sharp feature around kF as would be the case for a
pronounced degenerate Fermi liquid behavior. The smooth-
ness of nσðkÞ cannot be explained by finite-temperature
Fermi-liquid theory: In a Fermi liquid the slope
dnσðkÞ=dðk=kFÞjk¼kF would extrapolate to −∞ in the limit
T=TF → 0, and this does not occur for the unitary Fermi
gas as shown by our data in Fig. 6. Deviations from Fermi
liquid theory are also present in the equation of state; e.g.,
the specific heat is not linear in temperature [40]. Going to
the largest temperature of Fig. 5, the low-momentum
occupation numbers become much more depleted and
the distribution broadens. However, the contact C=k4F is
roughly unchanged [cf. Fig. 2(a)], which can be viewed as a
delicate compensation between two trends: The occupation
numbers increase for k moderately larger than kF, which
tends to increase the contact, but the onset of the C=k4

regime is pushed to higher momenta (see Fig. 4), which
tends to decrease the contact.
In conclusion, we obtained accurate results for the

temperature dependence of the contact and the momentum
distribution of the normal unitary Fermi gas. This allows us
to discriminate between the contradicting earlier predic-
tions. In the canonical ensemble, the contact is found to
depend only weakly on temperature in a broad temperature
range T ≲ TF, in remarkable agreement with the self-
consistent T-matrix approximation [27]. The experimental
data [22] are also consistent with our results given the
experimental error bars [59]. More accurate experimental
data are highly desirable to provide a more stringent test of
our theoretical approach, and to understand the behavior of
the contact when crossing the superfluid phase transition
[22]. Our results can also serve as benchmarks in numerous
contexts where the contact appears in sum rules [9,60–62]
or in ultraviolet asymptotics [27,57,62–66].
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FIG. 5. BDMC data for the momentum distribution at various
temperatures. Error bars are represented by the gray error bands.
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FIG. 6. Inverse slope of the momentum distribution at the Fermi
momentum vs temperature. For a Fermi liquid this quantity
linearly tends to zero for T=TF → 0 (see solid line). In contrast,
a linear extrapolation of our data for the unitary Fermi gas
(dashed line) does not go through the origin.
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