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We demonstrate that a summing up series of Feynman diagrams can yield unbiased accurate results for
strongly correlated fermions even when the convergence radius vanishes. We consider the unitary Fermi
gas, a model of nonrelativistic fermions in three-dimensional continuous space. Diagrams are built from
partially dressed or fully dressed propagators of single particles and pairs. The series is resummed by a
conformal-Borel transformation that incorporates the large-order behavior and the analytic structure in the
Borel plane, which are found by the instanton approach. We report highly accurate numerical results for the
equation of state in the normal unpolarized regime, and reconcile experimental data with the theoretically
conjectured fourth virial coefficient.
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Feynman diagrams are a powerful computational tool and
have led to an impressive list of importantapproximate results
in various branches of physics. But is it possible to make
accurate predictions by summing up Feynman diagrams?
The answer is certainly yes if the coupling constant is

small. The most famous example is quantum electrody-
namics. Dyson argued that the vacuum becomes unstable at
negative fine-structure constant and hence the convergence
radius should be zero [1]. Nonetheless, thanks to the
smallness of the coupling constant, the diagrammatic series
behaves as a convergent series for all practical purposes,
leading to the most stringently tested physical theory [2–4].
But what about strongly correlated theories? In the

pioneering work [5–7] critical exponents were accurately
computed by summing up Feynman diagrams in the
strongly correlated regime of ϕ4 theory. The problem of
zero convergence radius was overcome by computing the
large-order asymptotic behavior [8,9] and using it to build
an appropriate resummation technique based on a con-
formal-Borel transformation.
For fermions on a lattice, it is known in the mathematical

physics literature that the convergence radius of diagram-
matic series is nonzero in some part of the phase diagram
[10–12]. In recent years, this led to controlled thermody-
namic-limit results in correlated regimes by summing up
convergent diagrammatic series to high enough order using
the diagrammatic Monte Carlo approach [13–21], where the
fermionic sign plays a very different role than in conven-
tional quantum Monte Carlo methods [22].
In this Letter, we report high-precision results obtained

by summing up Feynman-diagram series for a strongly

correlated continuous-space fermionic theory with zero
convergence radius. Specifically, we consider non-relativ-
istic spin-1=2 fermions in three space dimensions with
contact interaction—a model which accurately describes
ongoing ultracold atom experiments and is also relevant to
neutron matter [23–33]. We derive the large-order asymp-
totic behavior of the diagrammatic series, and we give
mathematical arguments and numerical evidence for the
resummability of the series by a specifically designed
conformal-Borel transformation that incorporates the
large-order behavior and the knowledge of the analytical
structure standing behind the series. Combining this new
resummation method with diagrammatic Monte Carlo
evaluation up to order 9, we obtain new results for the
equation of state in the normal phase, which agree with the
ultracold-atom experimental data from Refs. [25,26],
except for the 4th virial coefficient for which our data
point to the theoretically conjectured value of Ref. [34].
In order to have a well-defined diagrammatic framework

for the contact interaction in continuous space, it is
necessary to incorporate exactly the two-particle scattering
problem. This is done most naturally by using the sum of all
ladder diagrams Γ0 as an effective interaction vertex
between ↑ and ↓ fermions, or equivalently, a partially
dressed pair propagator. Diagrammatically,

ð1Þ
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where the • denotes the bare coupling constant and G0 is
the free fermion propagator, given by G0;σðp;ωνÞ ¼
ðiων þ μσ − p2=2mÞ−1 in the momentum Matsubara-
frequency representation. Here, σ∈f↑;↓g, μσ is the chemi-
cal potential, m the fermion mass, and ων ¼ ð2νþ 1Þπ=β
with β ¼ 1=ðkBTÞ the inverse temperature. Γ0 is well
defined for the continuous-space zero-range interaction
(without momentum cutoff) and only depends on the
s-wave scattering length a (apart from μ↑, μ↓, β, and
external momentum frequency). The same property holds
for higher-order diagrams built from G0 and Γ0. This
“ladder scheme” is suited to describe the crossover between
Fermi and Bose gases, and its lowest-order approximation
(left diagram in Fig. 1) is widely used [33,35,36].
A diagrammatic Monte Carlo algorithm [13] allows us
to stochastically evaluate all Feynman diagrams up to
order 9 (see Fig. 1).
An intensive quantity Q, such as pressure or self-energy,

can be formally written as a diagrammatic series
P∞

N¼0 aN .
Here aN is a sum of connected diagrams of order N (see
Fig. 1). Aswe shall see this diagrammatic series is divergent,
and it is not obvious how to give a meaning to the formal

expansionQ¼? P∞
N¼0 aN . To do so, we introduce a function

QðzÞ whose Taylor series is
P∞

N¼0 aNz
N , and such that

Qðz ¼ 1Þ is the desired exact physical result. Here z is a
formal parameter playing the role of an effective coupling
constant. A nonperturbative construction ofQðzÞ is realized
by introducing the action [37]

SðzÞ ¼ −
Z

d3r
Z

β

0

dτ

� X

σ¼↑;↓

φ̄σG−1
0;σφσ þ η̄Γ−1

0 η

− zη̄Π0ηþ
ffiffiffi
z

p ðη̄φ↓φ↑ þ φ̄↑φ̄↓ηÞ
�
; ð2Þ

where φσ are fermionic Grassmann fields, η is a bosonic
complex field, and Π0 is the particle-particle bubble
ðG0;↑G0;↓Þ, which cancels out all diagrams containing
particle-particle bubbles, as required to avoid double count-
ing. For example, for the pressure we simply have

QðzÞ ¼ lim
V→∞

1

βV
ln
Z

DφDη e−S
ðzÞ½φ;η� ð3Þ

with V the volume.

Large-order behavior.—We now turn to the crucial
problem of computing the large-N behavior of aN . In
the pioneering works [8,9], the large-order behavior for ϕ4

theory was obtained from a saddle point of the functional
integral. To study the large-order behavior of fermionic
theories, it was found essential to integrate out fermionic
fields, which leads to a purely bosonic functional integral,

whose integrand e−S
ðzÞ
eff ½η� can be estimated in the large-field

limit using a Thomas-Fermi (i.e., quasilocal) approxima-
tion [38–42]. In our problem, this procedure can be justified
by showing that this integrand is an entire function of z

[43,44]. We find that the bosonic action SðzÞeff ½η� scales
as z5=4

R
d3rdτjηðr; τÞj5=2 for large jηj. The saddle-point

method then gives

aN ¼
N→∞

ΓðN=5ÞA−N

× Re exp ½i4πN=5 −U1eiπ=5N4=5 þOðN3=5Þ�; ð4Þ

where U1 ¼ 51=5A and

A ≔
1

π2

�
4

5 Γð3=4Þ8
�1

5

min
η

−hηjΓ−1
0 jηi

ðR d3rdτ jηðr; τÞj5=2Þ4=5 : ð5Þ

The fact that aN is of order ðN!Þ1=5 immediately implies
that the radius of convergence is zero. This raises a
fundamental question: Can the exact physical result still
be constructed in a unique way from the set faNg?
Resummation.—Given the above asymptotic behavior, it

is natural to introduce the generalized Borel transform
defined by

BðzÞ ≔
X∞

N¼0

aN
μN

zN; jzj < A; ð6Þ

μN ≔
Z

∞

0

dt t4e−t
5−bt4−ct3tN: ð7Þ

Note that μN ∼ ΓðN=5Þ exp½−bðN=5Þ4=5� for N → ∞. The
corresponding inverse Borel transformation reads

QBðzÞ ≔
Z

∞

0

dt t4e−t
5−bt4−ct3BðztÞ; ð8Þ

where b and c are free parameters at this stage.
The answer to the above unicity question is then given by

the following theorem due to Nevanlinna [45–49]. Let
W≔fz∈Cj0<jzj<R;jargzj<π=10þϵg, for some R>0
and ϵ > 0. If
(1) QðzÞ is analytical for z∈W,
(2) ∃ Ã andC such that jdNQðzÞ=dzN j=N!≤CÃ−NðN!Þ1=5

for all N ≥ 0 and z ∈ W,
(3) aN ¼ limz→0;z∈WdNQðzÞ=dzN=N! then
(i) BðzÞ can be analytically continued for z ∈ Rþ,
(ii) ∃R0 > 0 such that QBðzÞ ¼ QðzÞ for z ∈ ½0; R0�.

FIG. 1. First-order diagram (left) and an example of 9th-order
diagram (right) for the single-particle self-energy. Each line
represents a single-particle propagator while each box is a
bosonic pair propagator.
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The hypotheses of this theorem hold in our situation for the
following reasons: Hypothesis 1 follows from the func-
tional integral representation (2) and the fact that the
integrand, after integrating out the fermions, is an entire
function of z that can be bounded in the large-η limit using
the Thomas-Fermi result. Hypothesis 2 can be obtained in a
similar way to the large-order behavior of aN . Hypothesis 3
is plausible given that the functional integral for z ∈ W is
absolutely convergent.
The problem of resummation is thereby reduced to the

one of analytical continuation of the Borel transform BðzÞ
to the whole real positive axis. To this end, it is essential to
know the analytical structure of BðzÞ in the complex z
plane. As follows from the large-order behavior of aN , BðzÞ
has singularities at z� ¼ A expð�i4π=5Þ. We find that BðzÞ
can be analytically continued to D ≔ Cnfz ∈ Cjj arg zj ¼
4π=5; jzj ≥ Ag under the condition jθðbÞj < π=5, where
θðbÞ ≔ arg½expðiπ=5ÞU1 − b=54=5� (note that b ¼ 0 is not
allowed). This analytical continuation is explicitly realized
by the one-to-one conformal transformation h that maps the
open unit disc B onto D such that hð0Þ ¼ 0 and ½hðwÞ�� ¼
hðw�Þ; see Fig. 2. In practice, the function B̃ðwÞ ≔
B½hðwÞ�, a priori defined for jhðwÞj < A, has a Taylor
series

P∞
N¼0 B̃NwN that converges for all w ∈ B; BðzÞ

can then be computed as B̃½h−1ðzÞ�¼P∞
N¼0B̃N ½h−1ðzÞ�N

for all z ∈ D. Substituting this expression into the

inverse Borel transform (8) finally yields Qð1Þ ¼
limNmax→∞

PNmax
N¼0 B

ðNmaxÞ
N aN where the coefficients BðNmaxÞ

N
are computed easily thanks to the expression of the
conformal mapping

hðwÞ ¼ 4
9
5Aw

5ð1þ wÞ2=5ð1 − wÞ8=5 : ð9Þ

We compute A from Eq. (5) by numerical minimization;
the minimizer ηc can be called instanton, or more appro-
priately soliton since it can be shown to be independent of
imaginary time (it is also rotationally invariant and spatially
localized). We note that QðzÞ has the two branch cuts
farg z ¼ �4π=5g, along which it has discontinuities

∼e−ðA=jzjÞ5 for jzj → 0 (this follows from the analyticity
of BðzÞ in D and the large-order behavior of aN) [50].
Bold scheme.—In order to access lower temperatures, we

turn to the “bold scheme” where diagrams are built self-
consistently from fully dressed propagators. While in the
above ladder scheme, lines and boxes in Fig. 1 denoted G0

and Γ0, in the bold scheme they denote the fully dressed G

and Γ [60]. Starting from an action SðzÞbold constructed as in
Ref. [37], we find the large-order behavior (4) modulo the
replacement of Γ0 by Γ in Eq. (5) and a modified expression
for U1 [43,44]. The justification is less solid than in the
ladder scheme, because the integrand of the purely bosonic
functional integral is not entire in z. The self-consistent
computation is done as follows: Starting from some initial
guess for G and Γ, we use the bold diagrammatic
Monte Carlo algorithm described in Ref. [60] to compute
the (skeleton) diagrammatic series for the single-particle
self-energy Σ and the pair self-energy Π. We then apply
the conformal-Borel resummation procedure to these
diagrammatic series. The resulting resummed Σ and Π
are then plugged into the Dyson equations to obtain
new propagators G and Γ. This cycle is repeated until
convergence [61].
We note that on approach to the superfluid transition,

A → 0 so that the series becomes increasingly hard to
resum, while in the high-temperature limit, A → ∞ (for
both ladder and bold schemes) so that the series divergence
becomes weaker.
Numerical results.— In this Letter we focus on the

central point of the BEC-BCS crossover, the unitary limit,
where the dimer binding energy vanishes and the scattering
length diverges. This unitary Fermi gas is strongly corre-
lated since the scattering cross section is on the order of the
squared interparticle distance. We report results for the
equation of state (EOS) in the normal phase, restricting for
now to the unpolarized gas, μ ¼ μ↑ ¼ μ↓. Scale invariance
implies than the rescaled density nλ3 is a universal function
of βμ, with λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2β=m

p
the thermal wavelength.

In the moderately degenerate regime, we find very good
convergence of the series as a function of the maximal
diagram order Nmax after resummation by the new con-
formal-Borel transformation, see Fig. 3. The final results for
ladder and bold schemes agree within their error bars which
are below 0.1%. The value measured at MIT is 2% higher, a
deviation within the experimental uncertainty [26].
Here and in what follows we empirically fixed the free

parameter b such that θðbÞ ¼ π=10 (i.e., b ¼ −54=5U1). We
observed consistent results for different values of the free
parameter c, and we adjusted it to optimize the conver-
gence. In Fig. 3, the conformal-Borel transformation was
applied to QðzÞ ¼ nðzÞ with c ¼ 12 for the ladder scheme,
and QðzÞ ¼ ΣðzÞ=z respectively ΠðzÞ=z with c ¼ 10 for
the bold scheme [64]. The error bars shown at each Nmax
include the statistical noise coming from the Monte Carlo,

FIG. 2. Conformal mapping: the singularities of the Borel
transform (in color) are mapped onto the unit circle. The two
points z� are mapped onto w� and the real positive axis is
mapped onto the segment [0, 1].
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and for the bold scheme also the error due to the finite
number of iterations. Our final error bars also include errors
due to finite Nmax and to cutoffs and discretizations in the
numerics, so that all sources of errors are taken into
account [65].
At lower temperatures, the ladder scheme is not appli-

cable (due to a pole in Γ0) but we still observe convergence
of the bold scheme, as shown in Fig. 4, where we cross-
check three variants of the conformal-Borel resummation:
QðzÞ ¼ ΣðzÞ=z respectively ΠðzÞ=z with c ¼ 13 (circles),
the same QðzÞ with c ¼ 60 (diamonds), and QðzÞ ¼ ΣðzÞ
respectively ΠðzÞ with c ¼ 60 (squares). Our final result
agrees with the MIT measurement up to a 3% deviation
consistent with the experimental uncertainty.
In the related earlier work [67], much simpler resum-

mation methods such as the Lindelöf method were used,
assuming that the diagrammatic series has a nonzero

convergence radius. This assumption is invalidated by
the large-order behavior jaN j ∼ ðN!Þ1=5 found here.
Hence the results of Ref. [67] contained a systematic error.
Nevertheless, they deviate from the new results reported
here by less than 2%, which is likely related to the
smallness of the exponent 1=5.
The subfactorial scaling jaN j ∼ ðN!Þ1=5 also implies that

for a given order N, the sum aN of all diagrams is much
smaller than the number ∼N! of diagrams. This is a
manifestation of the massive cancellation between different
diagrams due to the fermionic sign.
Finally, we turn to the higher-temperature regime, where

our new high-accuracy data shed light on a controversy.
In the limit T ≫ TF, the EOS admits a virial expansion

nðJÞvirialλ
3 ¼ 2

P
J
j¼0 j bj ζ

j in powers of the fugacity ζ ¼ eβμ.
The virial coefficient bj is determined by the j-body
problem, and is known exactly for j ¼ 2 [23,68] and
j ¼ 3 [69,70]. In Fig. 5 we subtract the known virial-3
result from our EOS data so that the result tends to b4 in
the nondegenerate limit ζ → 0. Accordingly, we display at
ζ ¼ 0 several values reported for b4: The value obtained
by Endo and Castin [34] (based on a physically motivated
mathematical conjecture) deviates from the values reported
by experimentalists from ENS [25] and MIT [26].
The dedicated path integral quantum Monte Carlo result
of Yan and Blume [71] has an error bar too large to resolve
the discrepancy. Our data suggest that the Endo-Castin
result is correct, but requires sufficiently small ζ to be
extracted, and correspondingly high accuracy to resolve the

difference n − nð3Þvirial ∝ ζ4 (at ζ ≈ 0.2 our error on nλ3 is
<0.01%), while extrapolations from ζ ≳ 0.6 lead to the
overestimated b4 values reported in Refs. [25,26]. In other
words, at ζ ≈ 0.6 (T=TF ≈ 1) the unitary Fermi gas is still
so strongly correlated that it cannot be reduced to a 4-body
problem.

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6  7  8  9

ladder scheme
bold scheme

MIT experiment

FIG. 3. Resummed density vs maximal diagram order at
βμ ¼ 0 (T=TF ≈ 0.6). The ladder and bold diagrammatic
schemes agree with each other and with experiment.
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 17

 1  2  3  4  5  6  7  8  9

MIT experiment

FIG. 4. Density vs maximal diagram order at βμ ¼ 2
(T=TF ≈ 0.2). The bold diagrammatic series is resummed by
three variants of the conformal-Borel transformation (see text).

FIG. 5. Equation of state and 4th virial coefficient: The
difference between the density n and its 3rd order virial expansion

nð3Þvirial, divided by the appropriate factor, must tend to the 4th virial
coefficient b4 in the high-temperature limit ζ → 0.
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In summary, we found that for the unitary Fermi gas, a
strongly correlated fermion model without small expansion
parameter, diagrammatic series built on partially or fully
dressed propagators can be Borel resummed and yield
accurate unbiased results, even though the convergence
radius is zero.
How does this relate to other fermionic theories? For

QED, the situation is opposite: Large-order behavior and
Borel summability are still open problems [40,41,56,72]
but no resummation is needed in practice because the
coupling constant is small. QCD combines both difficul-
ties: It is nonperturbative and probably not Borel sum-
mable [57,73], which calls for new ideas [74]. The present
approach may, however, be directly generalizable to other
continuous-space strongly correlated fermion problems,
such as nuclear matter or the electron gas.
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