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The spin-coherent-state positive-operator-valued-measure (POVM) is a fundamental measurement in
quantum science, with applications including tomography, metrology, teleportation, benchmarking, and
measurement of Husimi phase space probabilities. We prove that this POVM is achieved by collectively
measuring the spin projection of an ensemble of qubits weakly and isotropically. We apply this in the
context of optimal tomography of pure qubits. We show numerically that through a sequence of weak
measurements of random directions of the collective spin component, sampled discretely or in a continuous
measurement with random controls, one can approach the optimal bound.
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In the standard paradigm of quantum tomography, one
is given N copies of a quantum state that one seeks to
estimate. When limited only by these finite quantum
statistics and no other systematic experimental errors, what
is the measurement that achieves the optimal average
estimation fidelity? For the case of qubits, given a priori
knowledge that the state is pure, this problem was solved
long ago in a seminal paper by Massar and Popescu (MP)
[1]. The optimal average fidelity is F̄ opt ¼ ðN þ 1Þ=
ðN þ 2Þ, and one can only reach this bound with a
measurement that acts collectively on all N copies.
“Local” measurements acting nonadaptively on one copy
at a time can only achieve at best a scaling of 1 − F̄ ∼
1=

ffiffiffiffi
N

p
[2–4].

The MP bound is achieved by a measurement whose
positive-operator-valued-measure (POVM) is an overcom-
plete basis whose elements are proportional to projectors
onto spin-coherent states (SCS) of the collective spin J
in the symmetric subspace of N ¼ 2J qubits. The
SCS-POVM is a fundamental measurement in quantum
information science, with applications including metrology
[5,6], teleportation [7], benchmarking [8], and measure-
ment of Husimi phase space probabilities [9]. While the
Glauber-coherent-state-POVM in infinite dimensions has a
well-known implementation via heterodyne measurement
[10], despite various attempts [11–13], there is no known
implementation of POVMs over generalized-coherent-
states for other Lie groups [14,15], such as the SU(2)-
coherent-states considered here (except for one qubit,
N ¼ 1, J ¼ 1=2) [13].
The SCS-POVM has been considered physically unat-

tainable and previous works have constructed alternative
POVMs that also attain the optimal bound for tomography

of qubits and qudits [16–20]. While in principle one can use
the Neumark extension to realize these POVMs consisting
of a finite number of measurement outcomes, such con-
structions have limited applicability, particularly as N
grows beyond a few qubits.
In this Letter, we show that the SCS-POVM is in fact

physically realizable in a direct manner for the application
of optimal tomography and other quantum information
protocols. In particular, we show that we can realize the
SCS-POVM by measuring the collective spin, J ¼P

N
i¼1 σ⃗

ðiÞ=2, weakly and isotropically over a sufficiently
long time. This sequence of weak measurements is in a
similar spirit to continuous collective measurement tomo-
graphy [21–23], which has been used for reconstructing
states in a fast and robust manner [24,25] as well as in the
“retrodiction” of initial quantum states [26–30]. Here we
show that the sequential isotropic protocol asymptotically
saturates the MP bound in the appropriate limit.
To establish the foundation and notation, we briefly

review the MP bound [1]. We consider N pure qubits all
prepared with the same unknown Bloch vector, n0. The
N-qubit state is jΨ0i≡ j↑n0

i⊗N ¼ jJ; Jin0
, a SCS in the

(2Jþ1)-dimensional symmetric subspace,where jJ;Min0
is

theDicke state alongn0, ðn0 · JÞjJ;Min0
¼ MjJ;Min0

. The
SCS form a POVM according to Ref. [11]

Z
dnEn ¼

Z
dn

2J þ 1

4π
jJ; JinhJ; Jjn ¼ 1; ð1Þ

where En denote the POVM elements, proportional to SCS
projectors along unit directions n,

R
dn denotes integration

over the 4π steradians of the sphere, and 1 is the identity on
the symmetric subspace.

PHYSICAL REVIEW LETTERS 121, 130404 (2018)

0031-9007=18=121(13)=130404(6) 130404-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.130404&domain=pdf&date_stamp=2018-09-26
https://doi.org/10.1103/PhysRevLett.121.130404
https://doi.org/10.1103/PhysRevLett.121.130404
https://doi.org/10.1103/PhysRevLett.121.130404
https://doi.org/10.1103/PhysRevLett.121.130404


If one considers a more general collective POVM, fErg
with outcomes r, Banaszek and Devetek have shown [31]
that the state assignment which maximizes the average
fidelity is j↑n̂r

i, where

n̂r ≡ TrðErJÞ
jTrðErJÞj

: ð2Þ

If Er is proportional to a SCS along n̂r, this result is
consistent with the MP protocol, since TrðErJÞ ∝
hJ; Jjn̂r

JjJ; Jin̂r
¼ n̂rJ.

We show that one can approximate the SCS-POVM to
arbitrary precision through a sequence of weak collective
measurements. The weak measurement of a collective spin
component u · J≡ Ju in the direction u is described by a
Kraus operator [32],

δKuðmÞ ¼
�
κδt
2π

�
1=4

e−
κδt
4
ðJu−mÞ2 ; ð3Þ

where m is a continuous variable outcome, κ is the
measurement rate, and δt is the measurement duration.
Given a state jΨðtÞi, the probability density for outcome m
is determined by the Born rule, PmðtÞ ¼ kδKmjΨðtÞik2,
and jΨðtþ δtÞi ¼ δKmjΨðtÞi=

ffiffiffiffiffiffi
Pm

p
is the postmeasure-

ment state. As a result, the weak measurement backaction
generally squeezes the uncertainty along the measured
direction and gives the mean spin a random kick.
If the direction u is fixed, then the measurement will

continually squeeze the uncertainty, ultimately leading to a
projective measurement onto an eigenstate of Ju. On the
other hand, if we consider a collection of the directions
fuig that are chosen isotropically, and each measurement is
sufficiently weak such that κδt ≪ ΔJ2ui

, then we expect the
effect of squeezing to “average out” and the state to remain
close to a SCS [23]. Thus, the net effect of the measurement
backaction will be a random walk of the mean spin on the
sphere. After some time the postmeasurement state will
have diffused sufficiently far from the initial state, a
distance of order

ffiffiffiffi
N

p
, and no further information about

the initial state will remain. The maximum fidelity is
limited, thus, by the total number of copies due to the
measurement backaction.
With this physical intuition, we specify our protocol

for approaching the MP bound with a physically
implementable unraveling of the SCS-POVM. Consider
a sequence of weak measurements along the L directions,
fu1;u2;…;uLg. A measurement record r≡ fm1;
m2;…; mLg defines a total effect specified by the
POVM element Er ¼ K†

rKr, where the total Kraus operator
is Kr ¼

Q
L
i¼1 δKi, with δKi ¼ δKmi

ðuiÞ given in Eq. (3).
Operators in an indexed product are understood here as
ordered from right to left.

In order to achieve a SCS-POVM, one must be able to
remove the effects of squeezing due to the quadratic
operators J2ui

therein. This can be done by grouping
together l weak measurements into time intervals
Δt ¼ lδt. For the Ith interval, lI ≡ fðI − 1Þlþ 1;…; Ilg,
the resulting Kraus operator is

ΔKI ≡
Y
i∈lI

δKi ∝
Y
i∈lI

e−
κδt
4
J2ui e

κδt
2
miJui

¼ exp

�
−
κδt
4

X
i∈lI

J2ui
þ κδt

2

X
i∈lI

miJui
þ…

�
; ð4Þ

as follows from the Baker-Campbell-Hausdorff expansion.
If the l measurements are isotropic, then

1

l

X
i∈lI

J2ui
¼ J ·

�
1

l

X
i∈lI

uiui

�
· J ¼ 1

3
J2: ð5Þ

Thus, for sufficiently weak measurements such that
κΔt ≪ 1, the quadratic squeezing terms average out
because J2 ¼ JðJ þ 1Þ1 is proportional to the identity.
Let us define the “operator valued” part K̃ðtÞ of the total

Kraus operator such that

KrðLδtÞ¼
�
κΔt
2π

�
L=4l

exp

�
−
κΔt
4

XL=l
I¼1

μ2I

�
e−

κt
12
J2K̃μðtÞ: ð6Þ

In the limit κΔt ≪ 1, K̃μðtÞ is the solution to the differential
equation

d
dt

K̃ðtÞ ¼ κ

2
μðtÞ · JK̃ðtÞ ð7Þ

with initial condition K̃ð0Þ ¼ 1. The collection of these
operator values enumerated by the coarse-grained
measurement records μðtÞ define a completely positive
superoperator

ZtðρÞ ¼
Z

DμK̃μðtÞρK̃μðtÞ†; ð8Þ

where we have defined the Wiener measure

Dμ ¼
�
κΔt
2π

�L
2l

e−
κΔt
2

P
L=l
I¼1

μ2I
YL=l
I¼1

dμI: ð9Þ

Given this Gaussian form, we see that the operator values
K̃μ are elements in an ensemble of paths generated by an
isotropic Wiener process. Since the measure is isotropic for
each μI the resulting POVM will be rotationally invariant,
as expected.
Significantly, the commutators of the generators in

Eq. (7) are in the six-dimensional span of f−iJk; Jkg
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which is a representation of the Lie algebra slð2;CÞ.
Therefore, each K̃μ at every time step is proportional to
the representation of a member of the Lie group SLð2;CÞ,
rather than the entire SLð2J þ 1;CÞ, which would be
generated if generators such as J2u were present in the
differential equation. Such operators can be decomposed
into a restricted polar form,

K̃ðtÞ ¼ UðtÞeαðtÞ·J; ð10Þ

where UðtÞ is a representation of an element of SU(2),
αðtÞ ¼ αðtÞnðtÞ is real, and nðtÞ is a unit vector. It follows
that the operator-valued part of the POVM element corre-
sponding to the sequence of weak measurements, sampled
isotropically over the sphere after a time T is

ẼðTÞ ¼ K̃†ðTÞK̃ðTÞ ¼ e2αðTÞ·J

¼
XJ
M¼−J

e2αðTÞMjJ;MinðTÞhJ;MjnðTÞ: ð11Þ

We will show that αðTÞ has a variance which increases

diffusively with time, αðTÞ2 ∝ κT. This implies that for
κT ≫ 1, the probability that jαðTÞj < A decreases asymp-
totically in time as A=

ffiffiffiffiffiffi
κT

p
, and thus in the long time limit,

only projectors of highest M ¼ �J are statistically signi-
ficant instances of the superoperator of Eq. (8). Thus,
each POVM element converges to ẼðTÞ ¼ e2jαðTÞjJjJ;
�Ji�n̂r

hJ;�Jj�n̂r
, proportional to a SCS projector along

an asymptotically constant direction n̂r ¼ �limT→∞nðTÞ.
Together with the rotation-invariant property, one can thus
conclude that the sequential weak isotropic measurement
protocol realizes the SCS-POVM.
To prove this, write the polar decomposition as

K̃ðtÞ ¼ UðtÞVðtÞeαðtÞJzV†ðtÞ; ð12Þ

where JnðtÞ ¼ VðtÞJzV†ðtÞ. We define the generator of this
unitary map as ðd=dtÞV ¼ −iðAðtÞ · JÞVðtÞ, where AðtÞ is
a real vector that we choose to satisfy nðtÞ ·AðtÞ ¼ 0 for
convenience. It then follows that

dK̃
dt

¼
�
dU
dt

U† þ dα
dt

Un · JU†

þ iUðeα·JA · Je−α·J −A · JÞU†
�
K̃: ð13Þ

For a rotation by an imaginary angle,

eα·JA · Je−α·J ¼ cosh αA · Jþ i sinh αðn ×AÞ · J: ð14Þ

Comparing Eq. (7) to Eq. (13) and taking the Hermitian
part,

dα
dt

n · J − sinh αðn ×AÞ · J ¼ κ

2
ðRμÞ · J; ð15Þ

where we define U−1ðμ · JÞU ≡ ðRμÞ · J. Equating the
components orthogonal and parallel to n,

dα
dt

¼ κ

2
n · ðRμÞ; ð16Þ

A ¼ κ

2 sinhα
n × ðRμÞ: ð17Þ

Integrating Eq. (16)

αðTÞ ¼ κ

2

Z
T

0

dtnðtÞ · ðRðtÞμðtÞÞ: ð18Þ

By Eq. (9), the μðtÞ are isotropically Gaussian distributed,
and thus the variables in the integrand n · ðRμÞ are
Gaussian distributed with the same (time-independent)

variance. It follows that αðTÞ2 ¼ ð1=12ÞκT increases dif-
fusively with the number of isotropic weak measurements,
where f½μ� ¼ R

Dμf½μ�.
This growth of αðTÞ implies that every statistically

significant element of the Kraus ensemble is proportional
to an operator of the form UðTÞjJ; Jin̂r

hJ; Jjn̂r
.

Specifically, according to Eq. (17), as αðTÞ → ∞, so must
AðTÞ → 0 and thus dV=dt → 0. This means that V
becomes asymptotically constant and thus �nðTÞ → n̂r.
Therefore, the direction of the SCS POVM element con-
verges to an estimate of the initial qubit direction.
Let us further define ðd=dtÞU ¼ −iðB · JÞU. Comparing

the anti-Hermitian parts of Eqs. (7) and (13), and sub-
stituting Eq. (17) into the result one finds,

B ¼ κðcosh α − 1Þ
2 sinh α

ðR−1nÞ × μ: ð19Þ

As αðTÞ → ∞, BðTÞ becomes constant in magnitude and
thus UðTÞ wanders perpetually. This implies that in any
realization of a sequence of weak measurements, the
postmeasurement state continues to diffuse over the sphere
for all times, as expected.
Any physical realization of this measurement protocol

will differ from the idealized model in a number of
fundamental respects. First, each measurement will have
a finite duration δt. Second, if we choose the l directions
as a random sampling of measurements over the sphere, it
will be only approximately isotropic. Finally the idealized
measurement will be corrupted by decoherence at a rate γ.
Throughout we assume κ ≫ γ and ignore decoherence in
the simulations below.
As an example of a physical realization, consider

tomography on atomic spins via continuous measurement
as studied in Refs. [21–25]. Using the Faraday interaction
and polarization spectroscopy, one can perform a collective
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Jz measurement of the spins when the laser probe couples
uniformly to the atomic ensemble (here z is the propagation
direction of the probe) [33]. The measurement rate is
κ ¼ Cγs, where γs is the photon scattering rate and C is
the cooperativity per atom. The measurement will be
weak when the duration of the probe pulse δt ≪ 1=κ;
decoherence is negligible if C ≫ 1=ðγsTÞ. For example, the
requisite strong atom-light interface has been demonstrated
for > 40 atoms in an optical fiber cavity, with observed
C ∼ 100 [34]. In such a geometry, one could perform a
QND measurement sequence that is decoherence-free to
good approximation in a time T ∼ 1=κ. Finally, to measure
an arbitrary spin projection Jui

one can precede the Jz
measurement with a physical rotation of the atomic spin
direction ui → z.
To demonstrate how one attains the optimal measure-

ment we have performed two types of numerical simu-
lations: (i) sequential random weak measurements;
(ii) continuous weak measurements concurrent with
time-dependent Hamiltonian control. In type (i), we con-
sider a set of measurement directions fu1;u2;…;uLg
randomly sampled on the sphere by the Haar mea-
sure. We simulate random measurement outcomes mi

sampled from the probability distribution PiðmiÞ ¼
hΨi−1jδK†

i δKijΨi−1i using Monte Carlo simulations.
The postmeasurement state is determined by jΨii ¼
½ðδKijΨi−1iÞ=ðkδKijΨi−1ikÞ�, which forms the input that
determines the probability distribution for the next meas-
urement outcome, miþ1, and the procedure is iterated for L
outcomes. In our simulations we choose κδt ¼ 10−4.
For a given simulated measurement record, r ¼

fm1;…; mLg, the POVM element is Er ¼ K†
rKr where

Kr ¼
Q

L
i δKi. We can test to see how this converges

through the “coherency parameter” which satisfies the
inequality

C≡ jTrðJErÞj2
J2ðTrErÞ2

≤ 1 ð20Þ

for any positive operator Er. The upper bound is achieved
iff Er is a rank-1 operator, proportional to a SCS projector.
Figure 1 shows CðtÞ, for 0 ≤ t ≤ 0.5=κ, i.e., 5000 random
directions, for N ¼ 50 copies of the qubit, and 50 different
simulated measurement records of a given initial SCS.
We see that C quickly converges to one for all realizations.
The simulation also shows the expected diffusion of the
postmeasurement state over longer times, once the POVM
element converges.
The time constant for the POVM to converge will depend

on the number of copies qubit N. As new information is
gained, we gain finer resolution of the spin direction.
Eventually, the resolution will be better than the spin
projection uncertainty ∼

ffiffiffiffi
N

p
and measurement backaction

will erase the initial condition. If the measurement direction

is fixed, the resolution ∼1=κT, and we expect the time
at which backaction becomes nonnegligible to scale as
κT ¼ Oð1=NÞ. Here, for an isotropic measurement, we can
use the coherency parameter to set a timescale for meas-
urement backaction and convergence of the POVM. We
expect from Eq. (11) that Er ∝ e2αðTÞJnðTÞ , and thus

CðTÞ ¼
�
1 −

1

J

XN
m¼1

e−m2αðTÞ 1 − e−ðNþ1−mÞ2αðTÞ

1 − e−ðNþ1Þ2αðTÞ

�
2

⟶
αðTÞ≫1

1 − 2½e2αðTÞðN þ 1Þ�−1: ð21Þ

In this case we see that the POVM converges when
e2αðTÞ ≫ 1=ðN þ 1Þ, which depends on the diffusive
growth of αðTÞ, or κT ¼ O(polylogð1=NÞ).
We also test how well this measurement protocol

achieves the MP bound by using the simulated record to
estimate the initial state according to Eq. (2). Figure 2
shows the simulated infidelity I ¼ 1 − F averaged over
400 Haar random initial SCS as a function of N. The total
measurement time is taken to be T ¼ 1=κ in all cases. The
MP bound Īopt ¼ ðN þ 2Þ−1 is shown for comparison. The
simulation is consistent with near optimal tomography.
In type (ii) we simulate continuous weak measurement

while simultaneously subjecting the system to a time-
dependent external control [21–25]. In this case the
measurements occur in infinitesimal time intervals, and
random controls can be used to sample random directions
on the sphere, but there are correlations between measure-
ment directions for short times, contrary to the idealizations
of our proof. The state evolves according to the stochastic

FIG. 1. Simulation of quantum state estimation of a random
state of 50 qubits. The coherency parameter of the POVM
element, Eq. (20), is shown as a function of time ti after the
ith measurement. The parameter converges to 1, corresponding to
a rank-1 operator proportional to a SCS. The green region
consists of 50 different realizations; the solid black line is a
particular instance. The inset demonstrates the evolution of the
Husimi distribution of the POVM element and the postmeasure-
ment state at distinct time steps for this realization.
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Schrödinger equation jΨðtþ dtÞi ¼ dKðtþ dt; tÞjΨðtÞi,
where the differential Kraus operator is

dKðt; tþdtÞ ¼ 1− iHðtÞdt− 1

8
κJ2zdtþ

ffiffiffi
κ

p
2

JzdyðtÞ ð22Þ

and

dyðtÞ ¼ ffiffiffi
κ

p hΨðtÞjJzjΨðtÞidtþ dWðtÞ ð23Þ

is the differential measurement record [dWðtÞ is the Wiener
increment] [35,36].
We simulate the evolution by updating the state with this

differential Kraus operator for time increments such that
κdt ¼ 10−3=ð8JÞ. The control Hamiltonian is taken to be
HðtÞ ¼ Ω½cosϕðtÞJx þ sinϕðtÞJy� with Ω=2π ¼ 10κ; ϕðtÞ
is the angle of a time-dependent magnetic field in the x-y
plane. We choose ϕðtÞ to be piecewise constant so the spins
precess about a magnetic field that has a fixed amplitude
but a random direction in the equator that changes every
τ ¼ 1=ð50κÞ. Such a control policy is sufficient to achieve
an informationally complete measurement record [23].
Given a measurement record, we estimate the initial

Bloch vector of a qubit in the atomic ensemble, using
Eq. (2), with Er ¼ K†

rKr and Kr ¼
QT=dt

i¼1 dKðti þ dt; tiÞ.
Figure 2 shows how the continuous measurement performs
compared to our random sequential weak protocol and the
MP bound.
In summary, we have shown that one can implement a

POVM whose outcomes are specified by the overcomplete
set of spin-coherent states via a sequence of weak measure-
ments that are isotropic over the sphere. The SCS-POVM
allows for optimal tomography of pure qubits, metrology,
and other applications. The mathematical proof and tech-
niques we have developed are generalizable to qudits,
continuous variable systems, and other generalized-
coherent-state POVMs of an arbitrary compact semisimple

Lie group [37]. Of particular interest is the possibility of a
generalized weak measurement protocol to measure the
initial k-body correlation functions in a symmetric ensemble.
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