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We propose a scheme for transporting nanoparticles immersed in a fluid, relying on quantum vacuum
fluctuations. The mechanism lies in the inhomogeneity-induced lateral Casimir force between a nano-
particle and a gradient metasurface and the relaxation of the conventional Dzyaloshinskiǐ-Lifshitz-
Pitaevskiǐ constraint, which allows quantum levitation for a broader class of material configurations. The
velocity for a nanosphere levitated above a grating is calculated and can be up to a few microns per minute.
The Born approximation gives general expressions for the Casimir energy which reveal size-selective
transport. For any given metasurface, a certain particle-metasurface separation exists where the transport
velocity peaks, forming a “Casimir passage.” The sign and strength of the Casimir interactions can be tuned
by the shapes of liquid-air menisci, potentially allowing real-time control of an otherwise passive force, and
enabling interesting on-off or directional switching of the transport process.
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Controlling nanoparticles is an essential tool that allows
for an improved understanding of nanoscale interactions
[1], development of self-assembly materials [2], labeled
bioimaging [3], and photothermal nanomedicine [4]. Many
techniques that rely on external fields such as optical
tweezers [5], magnetic tweezers [6], thermal ratchets [7],
etc., have been developed. However, passive systems that
require no external input are much more efficient and
fundamentally interesting for the development of complex
lab-on-a-chip systems. Casimir forces arising from quan-
tum vacuum fluctuations [8] are entirely internal to the
system of interest and are thus an attractive candidate for
developing passive “nanoparticle ramps.”
The Casimir force has been experimentally measured to

be consistent with theoretical predictions [9], and demon-
strated in quantum actuation [10] to drive contactless
nanodevices. Lateral Casimir forces that can affect fly-by
nanoparticles have also been proposed recently, for a
spinning particle near a plate (rotation-induced mirror-
symmetry breaking) [11] and for an anisotropic particle
near a plate in thermal nonequilibrium (anisotropy induced)
[12]. To transport nanoparticles, contact friction from the
substrate must be avoided through quantum levitation
which, according to the Dzyaloshinskiǐ-Lifshitz-Pitaevskiǐ
(DLP) constraint on the permittivities of the components
[13,14], usually needs fluidic environments where previ-
ously reported mechanisms to generate lateral Casimir
forces do not work [15].
This Letter proposes inhomogeneity-induced lateral

Casimir forces, based on superhydrophobic gradient

metasurfaces [16] as schematically shown in Fig. 1, and
predicts the transport of an immersed nanoparticle driven
by Casimir and/or Langevin stochastic forces. This trans-
port process would generally be interrupted if either type of
fluctuation is turned off in the Langevin equation, where
quantum vacuum fluctuations generate a washboard-
type Casimir energy ramp, while stochastic forces assist
transitions of the nanoparticle to lower-energy positions
across energy barriers. This behavior resembles a Brownian
motor [17], and no external field is needed. For generic
nanoparticles and gradient metasurfaces, Casimir energy
barriers and directional lateral Casimir forces compete,
yielding nontrivial transport velocity dependence on vari-
ous parameters.
Considering a sphere of radius ρ above a one-

dimensional grating of filling factor,

fðxÞ ¼

8>><
>>:

fmin for x ≤ 0

fmin þ xðfmax−fminÞ
L for 0 < x < L

fmax for x ≥ L;

ð1Þ

where L is the length of a typical nanoparticle channel. The
width of grooves of the grating w is kept constant, so that
the sinking depth of the liquid-air menisci δ can be treated
identically [period of unit cells is pðxÞ ¼ w=½1 − fðxÞ�].
The Casimir energy of this system at thermal equilibrium,
in contrast to the well-known trace-log formula, evaluates
the log operation and exactly reads [18]
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γ

Z
∞
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hkγ; injXRpXRmjkγ; inind2k; ð2Þ

where β ¼ 1=kBT (kB the Boltzmann constant), jkγ; inin is
the plane-wave state at a given Matsubara frequency iξn ≡
2πni=ℏβ (ℏ the reduced Planck constant), k is the lateral
wave vector in the x-y plane, γ ¼ TE or TM represents
polarization, and in (out) means the negative- (positive-)z
propagation direction. The prime on the summation over
Matsubara frequencies indicates that the n ¼ 0 term is
weighted by 1=2. And RpðmÞ is the reflection operator
of the nanoparticle (metasurface) to be evaluated at the z ¼
a (0) plane. X ¼ e−k̂za is the translation operator where the

normal wave number kz ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ εfðξn=cÞ2

q
and εðr; iξnÞ

is the permittivity at the corresponding Matsubara fre-
quency (εf for the uniform fluid, c the speed of light in
vacuum). Casimir forces F j ¼ −∂jE have similar forms as
Eq. (2), but with Rm replaced by

−∂jRm ¼
�−i½k̂;Rm�− for j ¼ x; y

½k̂z;Rm�þ for j ¼ z;
ð3Þ

where ½·�−ðþÞ is the anticommutative (commutative) oper-
ator. For gradient metasurfaces, exact periodicity is lost in
the unit-cell length scale but remains in the supercell length
scale [16]. Rm can be evaluated by rigorous coupled-wave
analysis [24], while Rp can be evaluated by partial-wave
analysis [25,26].
Figure 2 shows F j in the proposed system specified

in Fig. 1, as functions of a=ρ, for varying δ=w and sub-
strate materials. In the considered superhydrophobic case,

water-silica and water-air interfaces both influence the
sphere at a distance of a and aþ δ, respectively. For
δ=w < 0.1, the Au-water-silica (silica metasurface) con-
figuration yields repulsive F nor, which intersects with the
−Gz line (G represents classical forces including gravity
and buoyancy), allowing levitation of the sphere. This also
holds for Au-water-silicon and Au-water-Au configura-
tions that have large Hamaker constants (not shown), as
long as f is small enough. For δ=w > 0.15, F nor exhibits
nonmonotonicity [27], with a negative trend in the small-
separation limit a=ρ → 0, where ðaþ δÞ=a becomes sig-
nificant (influence of water-air interfaces significantly
weakened as compared with that of water-silica interfaces).
Water-polytetrauoroethylene (PTFE) interfaces repel the
golden sphere as well as water-air interfaces, so no non-
monotonicity shows up when δ=w → ∞. From a macro-
scopic point of view, the above results mean that the total
behavior of trapped air and substrate of the metasurface
(εm) amounts to that of an effective planar medium
(1 < εeff < εm) [28], and thus the conventional DLP
repulsion constraint εm < εf < εp is significantly relaxed

FIG. 1. Dynamics of a golden sphere (ρ ¼ 1 μm) immersed in
water above a one-dimensional silica grating (fmin ¼ 0.001,
fmax ¼ 0.5, L=ρ ¼ 7.6, w=ρ ¼ 0.1) for Cassie (δ=w ¼ 0) and
Wenzel states (δ=w ¼ ∞) at room temperature (T ¼ 300 K). The
dashed cyan curve below gratings and the dashed black curve
below the trajectory represent the effective no-slip boundary and
vertical equilibrium heights, respectively, for the Cassie state.

(a)

(b)

FIG. 2. (a) Normal and (b) lateral Casimir forces, F nor and F lat,
on the sphere described in Fig. 1 (at x=ρ ¼ 2.405, center of a
groove), as functions of particle-metasurface separation a=ρ, for
varying sinking depths δ=w and substrate materials (fN: femto-
Newton; pN: pico-Newton). −Gz ¼ 0.75 pN is also shown in (a)
(dotted gray line). Top inset: Profile of the imaginary part of the
Fourier-transformed permittivity of a typical gradient metasurface
at Matsubara frequencies. Bottom inset: Contributions of lateral
wave number to F lat at different positions (x̃ ¼ x − x0, x0=ρ ¼
5.045 the center of a groove, a=ρ ¼ 0.02). k0 ¼ 2π=4.01 μm.
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to εeff < εf < εp. For gradient metasurfaces, mirror-
symmetry breaking in the unit-cell length scale (captured
by side peaks in the top inset) is common in previously
studied periodic gratings, while symmetry breaking in the
supercell length scale (shadowed peaks around �k0 [29])
generates lateral inhomogeneity [30] that accounts for the
inhomogeneity-induced lateral Casimir force. F lat of mag-
nitudes comparable with the particle’s weight can also be
analyzed via competing contributions from different inter-
faces. Notably, at a fixed particle position, F lat from the
PTFE metasurface flips sign for increasing δ, while F lat
from the silica metasurface remains directional. The Au
permittivity in computations is obtained from a Drude
model, εAu¼1þΩ2=ξnðξnþΓÞ, with plasma frequency
Ω ¼ 1.28 × 1016 rad=s and damping constant Γ ¼
6.60 × 1013 rad=s. The silica permittivity is fitted by
Lorentz terms from tabular data [31]. Permittivities of water
and PTFEare obtained fromLorentzmodelswith parameters
given in Ref. [32]. All magnetic responses are ignored.
These new features of Casimir forces lead to the

ensemble-averaged trajectory (haðtÞi=ρ versus hxðtÞi=ρ)
of the sphere in Fig. 1, according to the Langevin equation,

_ri ¼ μij½F j þ Gj − m̈rj� þ νijζjðtÞ; ð4Þ

where νijνjk ¼ 2μik=β is implied by the fluctuation-
dissipation theorem (μij is the position-dependent mobility
tensor), −m̈r is the inertial force (dot means derivative with
respect to time), and ζ with zero mean hζiðtÞi ¼ 0, and
temporal correlation hζiðtÞζjðt0Þi ¼ δijδðt − t0Þ represents
Gaussian white noise. The effective slip length of this
system for the Cassie state (δ=w ¼ 0),

bðxÞ ¼ pðxÞ
2π

ln sec

�
π

2
½1 − fðxÞ�

�
; ð5Þ

in comparison to uniform gratings [33], implies that the
effective no-slip boundary is no longer parallel to the z ¼ 0
plane due to gradients, but with an angle θ ¼ arctan ∂xb,
and thus the mobility tensor generally features off-diagonal
terms μxz and μzx. In the present case, θ is found to be
within 4 deg for which off-digonal terms ∼ sin θ are
vanishingly small, and thus lateral and normal motions
of the sphere decouple. It turns out that different mobility
profiles of μk and μ⊥ do not alter our conclusions [34], and
it is illustrative to model them as

μk ¼ μ0

�
1 −

9

16
τk þ

1

8
τ3k −

45

256
τ4k −

1

16
τ5k −

83

256
τ6k

�
;

μ⊥ ¼ μ0

�
1 −

9

8
τ⊥ þ 1

2
τ3⊥ − 0.535τ4⊥ þ 0.160τ5⊥

�
; ð6Þ

where τ⊥ ¼ ρ=ðρþ aÞ, τk ¼ ρ=ðρþ aþ bÞ, and μ0 is the
bulk mobility. Here it is further required that μ → 0 when

τ → 1. TheCassie-state trajectory, obtained for 100 repeated
finite-difference simulations for a total time of 270 s at a time
step of δt ¼ 0.01 s [35], illustrates the transport behavior
with an average speed of about 2 μm=s. The Wenzel-state
trajectory, on the other hand, drops immediately to around
a=ρ ¼ 0 and x=ρ ¼ 0 from the beginning, as well as the
case ignoring F j. If stochastic forces are turned off, the
sphere (Cassie state) is found to travel along the equilibrium-
height (dashed black) curve but gets stopped halfway by
energy barriers (not shown). Diffusion makes hai≡R
a expf−βEtotgda=

R
expf−βEtotgda larger than the equi-

librium height, whereF nor þ Gz ¼ 0, due to the asymmetry
of EtotðaÞ ¼ EðaÞ −Gza along the z direction. This quanti-
tatively explains the fact that the Cassie-state trajectory in
Fig. 1 is 5.8 nm above the equilibrium height. Tuning the
sinking depth δ via pressure differenceΔ of the liquid and air
through the Young-Laplace equation δ ∼ 2Δw2=σ (σ the
liquid-air surface tension) significantly affects the Casimir
force (both sign and strength, see Fig. 2), and thus enables
on-off or directional switching of the transport process.
More generally, mirror-symmetry breaking of the one-

dimensional-gradient (along the x axis) metasurface could
be approximated as (top inset of Fig. 2)

Imε̃mðkx; iξnÞ ≈ −q1sgnðkxÞδ
�
jkxj −

2π

p

�

− q2sgnðkxÞδ
�
jkxj −

2π

P

�
; ð7Þ

where P is the supercell dimension and Imε̃ is the
imaginary part of the Fourier transformed (in x axis;
y and z dependences suppressed) permittivity. According
to the Kramers-Kronig relation, εmðr; iξnÞ ¼ 1þ ð2=πÞR∞
0 ωImεmðr;ωÞ=ðω2 þ ξ2nÞdω, q1 and q2 would always
be zero if the mirror symmetry holds. Equation (7) corre-
sponds to sinusoidally modulated permittivities, and under
the Born approximation entails [36]

F lat ¼ q1A cos

�
2π

p
x

�
þ q2B ð8Þ

in the P ≫ x limit, which implies that the Casimir energy,

EðxÞ ¼ −q1
Ap
2π

sin

�
2π

p
x

�
− q2Bx − C; ð9Þ

resembles a washboard-type potential ramp for the nano-
particle. Here, properties of the particle play their roles
through A and B. The second term of Eq. (8) is the
inhomogeneity-induced directional force, while the first
term oscillates with x, qualitatively consistent with the
bottom inset in Fig. 2 (P ¼ P̃ ¼ 4.01 μm).
Figure 3 shows v≡ _x as a function of ρ=p, according to

Eq. (9) and the overdamped Stratonovich formula [37],
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v ¼ pμkð1 − e−βq2BpÞ=βR p
0 dxe−βEðxÞ

R
xþp
x dyeβEðyÞ

: ð10Þ

When q2 ¼ 0, Eq. (10) yields v ¼ 0 and the proposed
system recovers the interaction between a sphere and a
periodic grating where Casimir transport does not occur.
The asymptotic (q1 ¼ 0) velocity (dashed gray) in the
b ¼ ∞ limit, decreases rapidly when ρ=p < 1 and reaches
a plateau when ρ=p > 1, due to the behavior of B=ρ. BðρÞ
(inset) is almost linear for large particle size, while B ¼
OðρÞ when ρ → 0. For nontrivial energy barriers (large q1),
the transport velocity shows a sharp peak in the ρ=p < 1
region (shadowed), increases rapidly in the 1 < ρ=p < 5
range, and approaches the asymptotic plateau when
ρ=p > 5, due to the behavior of A. For ρ=p < 0.5, both
A and B increase with ρ, but A is much faster. For ρ=p > 1,
force contributions from neighboring unit cells compete
with each other and thus A decreases, leaving a peak around
0.5 < ρ=p < 1, while B still increases. The nanoparticle is
in the running state most of the time when q1A is small,
while it gets locked by energy barriers most of the time
when q1A becomes large. Therefore, the effective transport
velocity is low in the region where A is large, and
significantly deviates from the asymptotic curve. With
increasing ρ=p the asymptotic velocity in the b ¼ 0 limit
increases rapidly at first but slowly decays later, due to the
suppression of μk by wall-induced hydrodynamic inter-
actions [Eq. (6)]. Nontrivial energy barriers again result in
sharp peaks of the velocity in the ρ=p < 1 region, indicat-
ing that the size-selective transport behavior is robust
against the slippage of the metasurface. In all computations,
A and B are generated assuming perfect conducting
boundaries on the particle, for simplicity.
Competition between energy barriers (term A) and

directional forces (B) results in an optimal value of a=ρ

(Fig. 4). The asymptotic velocity (dashed gray) in the
b ¼ ∞ limit diverges when a=ρ → 0 and decays when
a=ρ → ∞, similar to the behavior of the Casimir force
BðaÞ. With any finite energy barrier, v → 0 when a=ρ → 0.
As is shown in the inset, A diverges faster than B in the
a=ρ → 0 limit, and decays faster in the opposite limit. This
means that, for any nonzero q1, a finite a=ρ must exist
below which energy barriers begin to dominate. The
separation range around the velocity peak defines a priority
passage for the nanoparticle, outside which nanoparticles
are transported much slower, where smaller energy barriers
result in narrower passages. The peaks are not around
where A ≤ B, so energy barriers are still important when v
is optimized. The b → 0 limit yields similar curves (not
shown), indicating that those features are also robust
against the slippage of the metasurface.
When the temperature of the system varies, Matsubara

frequencies change and Casimir forces (both A and B)
modestly increase with T (not shown). The total influence,
according to Eq. (10), is that v ∝ 1=β ∝ T, which might be
another way to control the transport.
In the proposed systems, Lewis acid-base interactions

and electrostatic double-layer interactions are also present
[38]. The former is usually within a range of 3 nm away
from the plate, and the latter can be suppressed by using
uncharged surfaces or tuning the Debye length to a similar
range. Experiments have demonstrated pure Casimir effects
without influence from those two interactions when the
particle-metasurface separation is beyond 10 nm [13,39],
and thus allow verification of the above results. The
inhomogeneity-induced lateral Casimir force can also
affect fly-by nanoparticles without fluidic environments.
The Casimir transport and its velocity’s dependence open
new opportunities for developing technologies and explain-
ing fundamental physical, biological, or chemical processes
at the nanoscale.

FIG. 3. Room-temperature Casimir transport velocity v as a
function of radius ρ (normalized by p ¼ 200 nm), for
a ¼ 50 nm, P ¼ 16.08 μm, and q2 ¼ 1. Inset: A and B as
functions of ρ=p.

FIG. 4. Room-temperature Casimir transport velocity v as a
function of separation a (normalized by ρ ¼ 500 nm), for b ¼ ∞,
q2 ¼ 1, p ¼ 400 nm, and P ¼ 16.08 μm. Inset: A and B as
functions of a=ρ.
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