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This Erratum reports an error found in the implementation of the code of the LIGO Scientific and Virgo Collaborations
(LVC) as used in gravitational-wave-based estimations of possible deviations from the post-Newtonian (PN) terms
expected in general relativity (GR). The error concerned the 0.5 PN term and affected the results previously published for
GW150914 [1] in Ref. [2], for GW151226 [3] in Ref. [4], and for GW170104 in Ref. [5]. We corrected the bug and present
the reproduced results in this Erratum, as well as in the related Errata [6,7]. The main conclusion, that the results are
consistent with general relativity, remains.
In Ref. [2], the test for the parameterized post-Newtonian [8] deviations from the expected GR values relied on creating

non-GR waveforms [9–13] and using them as potential matches for the observed waveforms [14–17]. In these waveforms,
implemented in the frequency domain, freedom was introduced by allowing the phase coefficients describing different
powers of the post-Newtonian parameter (equivalently, powers of the frequency) to assume a range of values, not only the
particular values prescribed by GR.
However, a coding bug was introduced, identically zeroing the deviations at 0.5 PN in the inspiral regime (as in GR). The

0.5 PN deviations were hence absent in the phasing formula, though not in the junction conditions that relate the inspiral
regime to the intermediate regime. Any constraints obtained in [2,4,5] only resulted from the latter.
This error affected the results of the non-GR parameter estimation (PE) [14] pipeline tests performed for finding bounds

on possible PN deviations from GR. In particular, they affect the bounds on the single deviations in the 0.5 PN term and on
the tests with multiple deviations together. These erroneous results appeared in Figs. 6 and 7 and Table I of [2], in Figs. 7
and 8 of [4], and in Fig. 9 of the Supplemental Material of [5]. The corrected versions of all of these have been produced.
The corrections for Figs. 6 and 7 and Table I of [2] appear below, while the others are available in [6,7]. All these results are
consistent with GR.
The error, introduced by erroneous caching during the optimization of the waveform generation for efficient PE, has been

corrected in commit [18] of the LALSuite [19] code. No subsequent LVC papers have been affected.

FIG. 1. This is the corrected Fig. 6 of [2], comparing the 90% upper bounds on PN parameter deviations from GR obtained from the
double pulsar PSR J0737-3039 [22,23] to those obtained from the first gravitational wave GW150914.
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Note that, while this error also affected the analysis of GW170608 [20], the reported results require no changes: with the
corrected analysis, the GR-predicted PN coefficient values continue to be consistent with the data. No change is required
regarding the preliminary reported results for GW170814 [21] either.
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Median GR quantile log10 BGR
model

Waveform regime Parameter f dependence Single Multiple Single Multiple Single
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−18.0 0.94 0.52 1.3� 0.3
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