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We present a phenomenological model for granular suspension rheology in which particle interactions
enter as constraints to relative particle motion. By considering constraints that are formed and released by
stress respectively, we derive a range of experimental flow curves in a single treatment and predict
singularities in viscosity and yield stress consistent with literature data. Fundamentally, we offer a generic
description of suspension flow that is independent of bespoke microphysics.
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Concentrated particulate dispersions are ubiquitous in
industry. When the particle size is in the granular (i.e., non-
Brownian) regime (radius R≳ 1 μm), their flow is noto-
riously difficult to predict and control [1,2]. Paradoxically,
a suspension of non-Brownian hard particles has no
intrinsic time or stress scale and so should have a viscosity
η that is independent of shear stress σ and rate _γ [2,3]. In
reality, three classes of flow curve ηðσÞ are observed, none
of which is Newtonian. Some granular suspensions shear
thin (dη=dσ < 0, class 1) [4,5], others shear thicken
(dη=dσ > 0, class 2) [6–8], while others show a varied
combination of thinning and thickening (class 3): thinning
then thickening (class 3a) [9,10], thickening then thinning
(class 3b) [11–13], or more complex behavior [10,14,15]
(class 3c). In each class, the suspensions can become solid-
like [16] or flow unstably [17,18].
Such behavior likely stems from details of the particle

interactions [2] set by, e.g., surface chemistry [19] or
roughness [20]. Most models incorporate such interactions
in a bespoke manner. Notably, a phenomenological model
by Wyart and Cates (WC) [21] predicts thickening (class 2)
due to a transition from frictionless (static friction coef-
ficient μ ≈ 0) to frictional (μ > 0) particle contacts above a
critical “onset stress”. Atomic force microscopy confirms
this picture for several systems [15,22], and the WC model
fits a number of experimental flow curves [7,8,18];
although, quantitative discrepancies with microscopic sim-
ulations remain [23].
To recast the WC model within a more general frame-

work, recall that frictional contacts constrain interparticle
sliding. Crucially, the WC model is agnostic to the

exact mechanism by which sliding is constrained, so that
disparate microphysics, e.g., stress-induced interlocking of
asperities [20,24], hydrogen bonding [25] or ‘traditional’
Coulomb friction, can all give rise to the same macroscopic,
shear-thickening phenomenology.
In this broader framework, the WC model deals with a

single type of constraint: sliding. Rolling (rotations about
axes perpendicular to the line of centers) and twisting
(rotations about the line of centers) degrees of freedom
remain unconstrained. By assuming that sliding constraints
are formed at increasing stress, the WC model accounts
for class 2 behavior, which, however, is rare in practice.
Real systems are typically class 1 or 3, for which current
explanations involve the ad hoc “bolting together” of
different kinds of bespoke physics [10].
Here, we generalize the WC model to two constraint

types, A and B ≠ A. For example, A ¼ sliding and B ¼
rolling (e.g., due to adhesive contact [26]). Constraint A
is formed by stress, while constraint B is released by
stress. Now, one single model predicts all observed
classes of experimental flow curves. This includes class
3b, whose rheology we find is sensitive to the exact
interplay of constraint formation and release, thus
explaining the variability of such systems observed
experimentally. Moreover, we make nontrivial predic-
tions for the emergence of singularities that are consistent
with literature data, e.g., re-entrant jamming in class 3a
and a yield stress diverging below random close packing
for class 1.
We begin by considering the case of a single constraint

type A, which is formed by increasing stress σ. In the
original WC model, A ¼ sliding. There are two possible
contact states: one in which A is constrained Ā, and
one in which A is unconstrained A. (Thus, e.g., Ā ¼
“non-sliding” and A ¼ “sliding.”) These states are asso-
ciated with different jamming points, ϕA and ϕĀ; thus, e.g.,
a suspension with all contacts in state A jams (η → ∞)
at ϕA. Existing literature suggests that ϕĀ < ϕA [27–29].
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Thus, for monodisperse spheres with A ¼ sliding,
ϕA ≈ ϕrcp ≈ 0.64 (random close packing) and ϕĀ ≈ ϕrlp ≈
0.55 < ϕA [27] (random loose packing [30]).
Under shear, A is constrained in a σ-dependent fashion,

so that a fraction fĀ of the contacts are in the Ā state, with
dfĀ=dσ > 0. A suspension with fĀ ¼ 0 (all contacts in
state A) jams at ϕA; when fĀ ¼ 1 (all contacts in state Ā), it
jams at ϕĀ. For 0 < fĀ < 1, the system jams at an
intermediate volume fraction, ϕJðfĀÞ, the functional form
of which is not known for all constraint types. We useWC’s
form for constrained sliding [21]:

ϕJðfĀÞ ¼ fĀϕĀ þ ð1 − fĀÞϕA: ð1Þ

The viscosity η increases as the distance to jamming
Δϕ ¼ ϕJðfĀÞ − ϕ decreases, diverging as ϕ → ϕJ. Again,
we use WC’s form for sliding constraints [21]:

ηðϕ;ϕJÞ ¼ η0ϕ
2
JðΔϕÞ−2 ¼ η0½1 − ϕ=ϕJ�−2; ð2Þ

where η0 is the viscosity of the suspending medium.
This single-constraint scenario leads to shear thickening:

increasing σ increases fĀ, decreasing ϕJ (and Δϕ), Eq. (1),
driving up η, Eq. (2). The exact form of the flow curve ηðσÞ
depends on fĀðσÞ, which encapsulates the stress-dependent
microphysics between particles.
Now, introduce a second constraint type B ≠ A that is

released by stress, giving four contact states: AB, ĀB, AB̄
and Ā B̄ (where B̄means B is constrained and Bmeans B is
not constrained), each with an associated jamming point:
ϕAB, ϕĀB, ϕAB̄, and ϕĀ B̄. Random close packing at ϕAB ¼
ϕrcp is the same for all identities of A and B since both are
unconstrained in the AB state. The other jamming points
depend on the nature of A and B and are unknown, in
general. In static packings of dry grains, combining
multiple constraint types typically lowers the minimum
packing fraction for mechanical stability [29,31,32]. We
suppose that this also applies to the jamming point of
sheared suspensions, so that ϕĀ B̄ < ϕĀB, ϕAB̄ < ϕAB.
In a fraction fB̄ of the contacts, B is constrained.

Importantly, dfB̄=dσ < 0. The jamming volume fraction,
ϕJ, now depends on both fĀ and fB̄, with ϕJ → ϕAB at
ðfĀ; fB̄Þ ¼ ð0; 0Þ, → ϕĀB at ðfĀ; fB̄Þ ¼ ð1; 0Þ, → ϕAB̄ at
ðfĀ; fB̄Þ ¼ ð0; 1Þ and → ϕĀ B̄ at ðfĀ; fB̄Þ ¼ ð1; 1Þ. The
simplest functional form consistent with these limits is

ϕJðfĀ; fB̄Þ ¼ ð1 − fĀÞð1 − fB̄ÞϕAB þ fĀð1 − fB̄ÞϕĀB

þ ð1 − fĀÞfB̄ϕAB̄ þ fĀfB̄ϕĀ B̄: ð3Þ

Finally, we again relate ϕJ to η via Eq. (2).
The rheology for the two-constraint case is far richer than

that for a single constraint. Even rather bland choices for
fĀðσÞ and fB̄ðσÞ readily lead to flow curves of all classes,
Fig. 1, including the little-understood class 3b. Within each

class, particularly class 3, the exact phenomenology is
sensitive to the detailed interplay between fĀ and fB̄, i.e., to
the relative formation of type-A and release of type-B
constraints with stress.
We present predictions using for fĀðσÞ:

fĀðσÞ ¼ exp½−ðσA=σÞα�; ð4Þ

where σA is the characteristic stress for the formation of
type-A constraints and α controls the rapidity of type-A
constraint formation with σ, and for fB̄ðσÞ:

fB̄ðσÞ ¼ 1 − exp½−ðσB=σÞβ�; ð5Þ

where σB is the characteristic stress for the release of
type-B constraints and β controls the rapidity of type-B
constraint release. The rheological class of the system is
now controlled by σA=σB and α=β. The exact scenario

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Two-constraint model: example flow curves. In all
panels, ϕĀB ¼ ϕAB̄ ¼ 0.86ϕAB and ϕĀ B̄ ¼ 0.47ϕAB. (a),(c),(e)
η=η0 versus σ=σB. (b),(d),(f) fĀ (solid lines) and fB̄ (dashed lines)
versus σ=σB. Parameters for class 1 (a),(b): σA=σB ¼ 10−6,
α ¼ β ¼ 1 and ϕ ¼ 0.39ϕAB; class 3a (c),(d): σA=σB ¼ 102,
α ¼ β ¼ 1 and ϕ ¼ 0.81ϕAB; class 3b (e),(f): α ¼ 1, β ¼ 0.7,
ϕ ¼ 0.69ϕAB at different σA=σB ¼ 0.40 (purple), 0.45 (green),
0.55 (cyan), 0.65 (orange), and 0.80 (yellow), from top to bottom
in (e) and left to right in (f).
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depends on the relative values of the jamming points;
however, the qualitative phenomenology is the same
provided ϕĀ B̄ < ϕĀB, ϕAB̄ < ϕAB. To make concrete pre-
dictions, we use ϕĀB ¼ ϕAB̄ ¼ 0.86ϕAB and ϕĀ B̄ ¼
0.47ϕAB (so if ϕAB ¼ ϕrcp ¼ 0.64, ϕĀB ¼ ϕAB̄ ¼ 0.55
and ϕĀ B̄ ¼ 0.30).
Class 1 (shear thinning) arises whenever σA=σB ≪ 1,

independent of α=β, Figs. 1(a) and 1(b) (see caption for
parameters). Since σA is readily exceeded, A is always
constrained and fĀ ¼ 1, Fig. 1(b). The shape of the flow
curve ηðσÞ, Fig. 1(a), reflects fB̄ðσÞ: it shear thins as type-B
constraints are progressively released, reaching a
Newtonian plateau when they are all removed.
Class 3a (thinning then thickening) arises when

σA=σB ≫ 1 and α=β ≤ 1, Figs. 1(c) and 1(d). σA and
σB are well separated, Fig. 1(d), so type-B constraints are
almost completely released before type-A ones begin to
form. ηðσÞ first shear thins as fB̄ drops, then shear
thickens as fĀ subsequently rises. If σB ¼ 0, i.e., B is
always unconstrained, simple shear thickening (class 2) is
recovered.
Class 3b (thickening then thinning) occurs only when

σA=σB ∼ 1, Figs. 1(e) and 1(f). Now, the form of ηðσÞ
cannot be easily deduced from the evolution of fĀðσÞ and
fB̄ðσÞ, and the viscosity “peak” is profoundly sensitive to
changes in σA=σB. Thus, for α=β ¼ 1.4 and ϕ=ϕAB ¼ 0.69,
halving σA=σB drops the peak by a factor of 10. There is a
similar sensitivity to α=β at fixed σA=σB, which we explore
in the Supplemental Material (SM) [33]. In each case,
however, the extended region of shear thinning after the
peak is controlled by the progressive release of constraints
on B, fB̄ → 0, with constraints on A almost saturated,
fĀ ≈ 1.
Such sensitivity is consistent with experiments, which

find class 3b ηðσÞ sensitive to small changes in, e.g.,
particle size [11] and suspending medium [12].
Presumably, the resulting alterations to particle surface
properties perturb the stress-dependent microphysics and
hence fĀ and fB̄, leading to Oð1Þ variations in ηðσÞ.
Our model also predicts a plethora of class 3c flow

curves (mapped out fully in the SM [33]), including a
commonly observed variation of class 3a in which shear
thickening is followed by further thinning [6,10,14,34].
Such behavior arises if constraints on B are released more
slowly than constraints on A are formed (α=β > 1).
Thus, considering two constraint types gives all three

classes of flow curve. In the SM [33], we discuss the
transition between the classes as σA=σB is varied. In our
scheme, system-specific interactions affect the rheology
only in how they constrain sliding, rolling, and twisting,
and how the resulting constraints depend on σ. Constraints
control the jamming point, ϕJ, Eq. (3), which is therefore
itself σ dependent ϕJðσÞ≡ ϕJ½fĀðσÞ; fB̄ðσÞ�. At fixed ϕ,
ηðσÞ is determined by the (σ-dependent) distance to
jamming ΔϕðσÞ ¼ ϕJðσÞ − ϕ, Eq. (2).

Some interactions do not impose constraints on inter-
particle sliding, rolling, or twisting, e.g., conservative
repulsive or attractive interactions (electrostatic, depletion,
etc.), but still lead to a _γ- or σ-dependent rheology. How,
then, does one determine whether the rheology is driven by
constraints or by other physics?
To answer this, note that at fixed ϕ the system can be in

one of two rheological states, depending on σ. If
ϕJðσÞ > ϕ, the system flows. If ϕJðσÞ ≤ ϕ, it jams, i.e.,
η → ∞. Although nonconstraint physics can give rise to
such bipartite behavior, our model makes specific predic-
tions for the emergence of viscosity singularities that are
not expected to arise generically otherwise. Whenever
confirmed, these would rule in constraint physics.
We explore these predictions for class 1 and class 3a (see

the SM [33] for class 3b) and compare them to literature
data. Figure 2(a) shows a typical σ − ϕ “phase diagram”
for class 1 (see caption for parameters). Red states are
jammed, ϕJðσÞ ≤ ϕ, and white states are flowing,
ϕJðσÞ > ϕ. The boundary of jammed states σjamðϕÞ is
defined by ϕJðσÞ ¼ ϕ, which we solve for numerically
using Eqs. (3)–(5).
Figure 2(b) (lines) shows flow curves at different ϕ

generated using the same model parameters. The form of
ηðσÞ (vis-á-vis singularities) at any given ϕ can be derived
by tracing a vertical path with increasing stress in Fig. 2(a).
Thus, at some ϕ < ϕĀ B̄, the system flows at all σ. At
ϕ ≥ ϕĀ B̄, the system is jammed until σ exceeds σjam,
whereupon it flows; i.e., the system has a yield stress σy ¼
σjam. This σy increases with ϕ, diverging at ϕĀB < ϕAB.
Thus, we predict jamming at any σ if ϕĀB ≤ ϕ < ϕAB.
A yield stress diverging at a ϕ substantially below ϕrcp

(≡ϕAB) is evident in many class 1 granular dispersions
[4,5]. We show representative data [5] for R ¼
2.5 μm polymethylmethacrylate (PMMA) spheres in

(a) (b)

FIG. 2. Singular behavior for class 1. (a) σ − ϕ phase diagram
showing jammed (ϕJ ≤ ϕ, red) and flowing (ϕJ > ϕ, white)
states. Solid curve, jamming boundary σjamðϕÞ. Vertical dashed
lines denote different jamming points, as labeled. Symbols, yield
stresses from Ref. [5], estimated as the lowest σ accessed at each
ϕ. (b) Symbols, flow curves from Ref. [5] at ϕ ¼ 0.13, 0.26, 0.35,
0.40, 0.45, 0.47, and 0.50, from bottom to top; η0 ¼ 0.216 Pa s.
Lines, model predictions for σA → 0, σB ¼ 1.2 Pa, α ¼ 1.0,
β¼0.5, and ϕAB¼0.64, ϕĀB ¼ ϕAB̄ ¼ 0.545, and ϕĀ B̄ ¼ 0.20,
at the same ϕ.
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polydimethylsiloxane (PDMS), Fig. 2(b) (symbols). Here,
σy [Fig. 2(a) (symbols)] emerges at ϕ ≈ 0.2, which we take
as ϕĀ B̄, and diverges at ≈ 0.55, which we take as ϕĀB.
Since ϕĀB ≈ ϕrlp, A ¼ sliding in this system.
The phase diagram for class 3a is more complex. We

plot a representative example for ϕAB̄ < ϕĀB in Fig. 3(a)
(see the SM [33] for the qualitatively similar cases of
ϕAB̄ ¼ ϕĀB and ϕAB̄ > ϕĀB) and a corresponding set of
flow curves at different ϕ in Fig. 3(b) (lines). Note first that
there is a ϕ window between ϕĀB and some ϕmax in which
σjamðϕÞ, Fig. 3(a) (solid line), is double-valued. For fixed ϕ
in this window, we predict re-entrant jamming: the system
unjams above a yield stress σy [¼lower part of σjamðϕÞ,
green] and subsequently rejams at a higher stress [¼upper
part of σjamðϕÞ, blue] [35]. Secondly, there is a critical
ϕmax < ϕAB above which the system is jammed at all σ.
Note that ϕmax is not associated with any divergence; rather
this is the ϕ at which the yield stress (green) and rejamming
stress (blue) become equal. Thus, as ϕ → ϕ−

max, the stress
window of flowing states shrinks, Fig. 3(b), and vanishes
at ϕmax.
There is a region in Fig. 3(a) (gray) in which dσ=d_γ < 0,

corresponding to d log η=d log σ > 1 in Fig. 3(b) (gray
lines). Here, shear flow is unstable [36]. The boundary of
this region σunsðϕÞ (black dashes) corresponds to solutions
of d log η=d log σ ¼ 1 and meets the yield (green) and
rejamming (blue) stresses at ϕmax. Under imposed _γ, σuns is
the maximum stress for stable flow.
Most systematic work on class 3a singular behavior has

been done for aqueous cornstarch dispersions (R ≈ 7 μm)
[16–18,37]. Under imposed σ, the only study of the entire

phase diagram [16] found pronounced shear thinning
followed by a completely rigid state, consistent with our
prediction. Typical phenomenology under imposed _γ is
shown in Fig. 3(b) (symbols) [17]. Cornstarch flows
steadily above a yield stress [□ in Fig. 3(a)] until some
higher _γ limit is reached, above which the suspension
separates into shear bands, Fig. 3(b) (gray symbols).
The stress at this upper limit plausibly corresponds
to our σunsðϕÞ line. Indeed, the experimental σuns [∘ in
Fig. 3(a)] and σy (□) appear to converge at ϕmax ≈
0.45 ≪ ϕrcp. As we would predict, flow was found impos-
sible for ϕ beyond this limit. The existence of a continuum
of fully jammed states at ϕmax < ϕ < ϕrcp, a surprise for the
authors of Ref. [17], emerges naturally from our model.
Note that all classes of granular suspension flow curve

can be obtained by appealing to a single constraint but with
fðσÞ mimicking ηðσÞ in each case; e.g., a peaked fðσÞ will
give class 3b flow curves [38]. This contrasts with our
appeal to two constraints with simple, generic forms for f,
Eqs. (4) and (5), to give all classes of flow curves. A single
constraint can lead to phase diagrams that are topologically
similar to Fig. 2(a) and Fig. 3(a); however, singular
behavior can arise only in a relatively narrow ϕ window,
ϕĀ ≤ ϕ < ϕA ¼ ϕrcp.
We should emphasize that our framework has been

constructed for granular suspensions. Recently, class 3a
flow curves, Fig. 3(b), have been observed in simulations of
Brownian particles with interparticle friction (= constrained
sliding) and conservative potential attraction [39], giving a
yield stress that depends much more weakly on ϕ (roughly
∝ ϕ2) than is observed in granular systems, Fig. 3(a) (□). If
the potential attraction is strong enough, the yield stress
“masks” shear thickening, and the system becomes class 1,
Fig. 2(b). However, the physics of yielding in a system
where constraints act in the presence of Brownian motion
is little understood and may be quite distinct from that
explored here.
Before concluding, we turn briefly to microphysics.

While much is known about the tribology of dry grains,
little is known about the effect of a solvent on sliding,
rolling, and twisting resistance. If, like others [21,40], we
assume that “dry tribology” is possible in a suspension,
then one realization of our scheme is the finite-area,
adhesive contact with asymmetric pressure distribution
between frictional particles [26,41]. Such a contact is
pinned by surface roughness, leading to a critical torque
M� for “peeling” particles apart, and σB ∼M�=R3.
Interestingly, simulations of adhesive, frictional dry grains
[29] are consistent with the observation of ϕĀB ≈ ϕAB̄ for
cornstarch in Fig. 3(a). On the other hand, our AB̄ state
(sliding unconstrained, rolling constrained) has no obvious
dry-granular analogue, suggesting that the contact physics
of dispersed particles holds surprises.
To conclude, we have presented a constraint-based

phenomenological model for granular dispersion flow that

(a) (b)

FIG. 3. Singular behavior for class 3a. (a) σ − ϕ phase diagram
showing jammed (red), stable flowing (white), and unstable
flowing (gray) states. Solid line, σjamðϕÞ (green ¼ yield stress,
blue ¼ re-jamming stress). Dashed curve, boundary of unstable
states σunsðϕÞ. Symbols, data from Ref. [17]: (□) yield stress
(estimated as σ at the lowest _γ accessed for each ϕ) and (∘) the
onset of banded flow. (b) Symbols, flow curves from Ref. [17] at
ϕ ¼ 0.40, 0.42, 0.43, and 0.439, from bottom to top; η0 ¼
1 mPa s [33]. Gray points correspond to shear-banded states.
Lines, model predictions for σA¼10 Pa, σB¼0.085Pa, α ¼ 0.36,
β ¼ 0.38, and ϕAB ¼ 0.52, ϕĀB ¼ 0.38, ϕAB̄ ¼ 0.335, and
ϕĀ B̄ ¼ 0.20. Volume fractions (from bottom to top), ϕ ¼ 0.25,
0.30, 0.33, 0.35, 0.38, 0.40, 0.42, 0.43, 0.439. Gray parts of the
curve are unstable, d log η=d log σ > 1 states.
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predicts all known classes of experimental flow curve.
Several nontrivial predictions for the emergence of singular
behavior follow, which are borne out by literature data. Our
notion that system-specific microphysics enters the rheol-
ogy only on the level of constraints is a powerful one. It
allows disparate systems to be captured in a single treat-
ment agnostic of microphysics, much like the way multi-
farious details are subsumed into a “tube constraint” in
polymer rheology [42]. Many challenges remain, including
making a formal link between constraints, jamming, and
dissipation [43,44] and probing the microphysics of con-
straints in the presence of solvent.
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