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We present a unified theory of charge carrier transport in 2D Dirac systems with broken mirror inversion
and time-reversal symmetries (e.g., as realized in ferromagnetic graphene). We find that the entanglement
between spin and pseudospin SU(2) degrees of freedom stemming from spin-orbit effects leads to a
distinctive gate voltage dependence (change of sign) of the anomalous Hall conductivity approaching the
topological gap, which remains robust against impurity scattering and thus is a smoking gun for magnetized
2D Dirac fermions. Furthermore, we unveil a robust skew scattering mechanism, modulated by the spin
texture of the energy bands, which causes a net spin accumulation at the sample boundaries even for spin-
transparent disorder. The newly unveiled extrinsic spin Hall effect is readily tunable by a gate voltage and
opens novel opportunities for the control of spin currents in 2D ferromagnetic materials.
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Ferromagnetic order in two-dimensional (2D) crystals is
of great significance for fundamental studies and applica-
tions in spintronics. Recent experiments have revealed
that intrinsic ferromagnetism occurs in 2D crystals of
Cr2Ge2Te6 [1] and CrI3 [2], while graphene and group-
VI dichalcogenide monolayers acquire large exchange
splitting when integrated with nanomagnets [3–9].
Different from bulk compounds, the electronic states of

atomically thin layers can be dramatically affected by
short-range magnetic interactions, opening up a new arena
for studies of emergent spin-dependent phenomena
[10–14]. In this regard, graphene and other 2D materials
with multiple internal degrees of freedom offer particularly
promising perspectives. The anomalous Hall effect (AHE)
recently observed in graphene/yttrium iron garnet hetero-
structures indicates that interface-induced magnetic
exchange coupling (MEC) is accompanied by a sizable
Bychov-Rashba effect [4,5]. The breaking of inversion
symmetry in a honeycomb layer couples different SU(2)
subspaces (spin and sublattice) [15] and can drive the
ferromagnetic 2D Dirac system through a topological
phase transition to a Chern insulator when the chemical
potential is tuned inside the gap [11,16,17]. This system is
predicted to exhibit the quantum anomalous Hall effect
(QAHE), with transverse conductivity σAH ¼ 2e2=h [11].
However, much less is known about the nonquantized
regime at finite carrier density. The latter is the current
experimental accessible regime [4,5]. Beyond the non-
quantized part of the intrinsic contribution, the presence of
a Fermi surface makes the transverse (anomalous Hall)
conductivity depend nontrivially on spin-dependent
scattering due to pseudospin-spin coupling [18–21].
Moreover, in ultraclean heterostructures, the MEC and
spin-orbit coupling (SOC) energy scales can easily reach
the disorder-induced broadening [22–24], thus questioning

the use of standard approaches where SOC is treated as a
weak perturbation.
In this Letter, we report an accurate theoretical study of

charge and spin transport in magnetized 2D Dirac systems
by considering the effects of strong MEC and SOC non-
perturbatively in the presence of dilute random impurities.
Our theory is valid for both weak (Born) and strong
(unitary) potential scattering and accounts for intervalley
processes from point defects. We find that the out-of-plane
component of the noncollinear spin texture Sμνk [with
μðνÞ ¼ �1 pseudospin (spin chirality); Figure 1] activates a
robust skew scattering mechanism, which determines the
behavior of leading Fermi surface contributions to
the transverse transport coefficients. The k modulation
of the spin polarization manifests into a ubiquitous change
of sign in the charge Hall conductivity as the Fermi level
approaches the majority spin band edge, which, as we argue
below, is a forerunner of the elusive QAHE [4,5,25].
Second, we predict that scattered electron waves with
opposite polarization (e.g., from within the “Mexican
hat” with Szk� ≷ 0; Figure 1) have different transverse
cross sections leading to net spin Hall current in the bulk
[26]. Such a spin Hall effect (SHE) in a 2D Dirac system
with broken time-reversal symmetry can be seen as the
reciprocal of the inverse spin Hall effect discovered
recently in ferromagnets [27–29]. The common stem of
AHE and SHE implies the change of sign reveals likewise
in the spin Hall response, unveiling the possibility of
reversing the spin accumulation at the sample boundaries
by gate voltage. The sign-change feature is preserved when
adding the Berry curvature-dependent contributions to the
AHE and SHE over a wide range of parameters in samples
with high mobility.
Model.—The low-energy Hamiltonian reads (we use

natural units e≡ 1≡ ℏ, unless stated otherwise)
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H ¼ vτzΣ · pþ δsz þ λτzðΣxsy − ΣysxÞ þ VðxÞ; ð1Þ

where v is the Fermi velocity of massless Dirac fermions,
δ (λ) is the MEC (Bychov-Rashba) energy scale, and VðxÞ
is a disorder potential describing impurity scattering. Here,
fτ;Σ; sg are Pauli matrices defined on valley, pseudospin,
and spin spaces, respectively, and p ¼ −i∇ is the 2D
kinematic momentum operator for states near the K ðK0Þ
point (τz ¼ �1). This model describes magnetized gra-
phene with C6v point group symmetry [4,5] and can be
easily extended to other ferromagnetic 2D materials such as
MoTe2=EuO [30–32]. We consider (nonmagnetic) matrix
disorder with VðxÞ ¼ P

iðu01þ uxτxÞδðx − xiÞ, where
fxigi¼1;…;N are random impurity positions and u0ðxÞ para-
metrizes the intravalley (intervalley) scattering strength
[33,34]. This choice allows us to interpolate between
“smooth” potentials in clean samples (juxj ≪ ju0j) and
the “sharp defect” limit of enhanced backscattering proc-
esses (ux ≈ u0). The energy-momentum dispersion relation
associated with clean system H0 ¼ H − VðxÞ reads

ϵμνðkÞ ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2 þM2

νðkÞ
q

; ð2Þ

where MνðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ2 þ δ2 þ 2ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ4 þ v2k2ðλ2 þ δ2Þ

pq
is

the SOC mass, and k ¼ jkj is the wave vector measured
from a Dirac point. Indices fμ; νg ¼ �1 define the carrier
polarity and the spin winding direction (Fig. 1). In the
absence of SOC, the Dirac cones are shifted vertically,
resulting in mixed electron-hole states near the Dirac point.
For λ ≠ 0, δ ¼ 0 (no MEC), the spectrum admits a spin-gap
or “pseudogap” region, within which the spin and momen-
tum of quasiparticles are locked at right angles (Bychov-
Rashba spin texture) [15,35]. The combination of SOC and
MEC opens a gap and splits the Dirac spectrum into three
branches: regions I and III, defined by jλδj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ δ2

p ≡
ϵI < jϵj < ϵII ¼ jδj and jϵj >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ2 þ δ2

p ≡ ϵIII; those
energy regimes are characterized by a nonsimply connected
Fermi surface, allowing for scattering between states with
different Fermi momenta; and region II, ϵII < jϵj < ϵIII
with only one band intersecting the Fermi level. For brevity,
all functions are projected onto valley τz ¼ 1 (K point). The
Bloch eigenstates read as

jψμνkðxÞi ¼

0
BBBBB@

e−{ϕk

{ ðϵμν−δÞ
2−v2k2

2vkλ
ϵμν−δ
vk

{ ðϵμν−δÞ
2−v2k2

2λðϵμνþδÞ e{ϕk

1
CCCCCA
e{k·x; ð3Þ

where ϕk is the wave vector polar angle. The noncoplanar
spin texture in momentum space highlights the competition
between different interactions: while the Bychov-Rashba
effect favors in-plane alignment, the exchange interaction
tilts the spins out of the plane, leading to a noncoplanar
band polarization [Fig. 1(c)]. The pronounced effects of
symmetry breaking on the spin texture has been highlighted
in other systems, e.g., surface states of Bi thin films [36].
We underline here its impact on relativistic transport: as
shown below, the out-of-plane spin texture Szμνk ≡ 1

2
hsziμνk

modulates intrinsic and extrinsic transport contributions;
even if the electronic states are not fully spin polarized, it
will prove useful to refer to effective spin-up (Sz > 0) and
spin-down (Sz < 0) states. We focus on positive energies,
ϵ > 0, and also λ, δ > 0, thus fixing μ ¼ 1 and omitting this
index from the expressions.
Spin texture-driven skew scattering.—To assess the

dominant extrinsic transport contributions in the metallic
regime (ϵ > ϵI), we solve the Boltzmann transport equa-
tions (BTEs) for a spatially homogeneous system. The
formalism allows for the inclusion of a nonquantizing
magnetic field and, more important, for a transparent
physical interpretation of the scattering processes. For a
controlled quantum diagrammatic treatment at the T-matrix
level, we refer the reader to the Supplemental Material [37],
where quantum side jump corrections are shown to be
subleading for typical (dilute) impurity concentrations. The
BTEs read as

∂tfkχ
− eðE þ v ×BÞ · ∇kfkχ

¼ 2πni
X
χ0¼�1

Z
Sd2k0

ð2πÞ2 ðfk0
χ0
T k0

χ0kχ
− fkχ

T kχk0
χ0
Þδðϵkχ

− ϵk0
χ0
Þ; ð4Þ

χ = −1
χ = 1

band index ring index

kx

Sz

Sy

I
II

QAHE

 III

spin-flip force
VH > 0

spin-conserving
 force

VH < 0

ν = 1
ν = −1

kx kx
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FIG. 1. (a)–(c) Energy bands and spin texture in systems with
(a)MEC,(b)SOC,and(c)MECandSOC.Forvisualizationpurposes,
the bands are plotted along k̂x (spins lie only in the yz plane).
(d) Behavior of Hall conductivity due to competing spin-Lorentz
forces. The elastic scattering channel dominates in regime II and III.
(e) Band classification using band (ring) index ν¼�1 (χ¼�1).
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where fkχ
¼ f0kχ

þ δfkχ
is the sum of the Fermi-Dirac

distribution function and δfkχ
, the deviation from equilib-

rium. Moreover, E and B are external dc fields, e is the
elementary charge, and S is the area. The right-hand
side is the collision term describing single impurity
scattering and ni is the impurity areal density. Subscripts
χ, χ0 ¼ �1 are “ring” indices for the outer or inner Fermi
surfaces associated with momenta k� ¼ v−1fϵ2 þ δ2 �
½ϵ2λ2 þ ðϵ2 − λ2Þδ2�1=2g1=2 [Fig. 1(d)] [44]. Accounting
for possible scattering resonances due to the Dirac spec-
trum [18], transition rates are evaluated by means of
the T-matrix approach, i.e., T kk0 ¼ jhk0jtjkij2, where
t ¼ V=ð1 − g0VÞ with V ¼ u0 þ τxux and g0 ¼

R
d2k=

ð4π2Þðϵ −H0k þ {0þÞ−1 is the integrated propagator. We
start by considering ux ¼ 0, for which electrons undergo
intra- and inter-ring scattering processes in the same valley
(see the Supplemental Material [37] for a graphical
visualization). Exploiting the Fermi surface isotropy, and
momentarily setting B ¼ 0, the exact solution to the
linearized BTEs (∇kfkχ

→ ∇kf0kχ
) is

δfkχ
¼ −e

�∂f0kχ

∂ϵ
�
vkχ

· ðτkχE þ τ⊥χ ẑ × EÞ; ð5Þ

with vkχ
¼ ∇kϵχðkÞ. In the above, τςχ ¼ τςχðϵ; λ; δ; u0; niÞ

are the longitudinal (ς ¼ k) and transverse (ς ¼ ⊥) trans-
port times, given by

τk ¼ −2ðΛ̂þ ϒ̂Λ̂−1ϒ̂Þ−11; τ⊥ ¼ Λ̂−1ϒ̂τk; ð6Þ

where τς ¼ ðτςχ ; τςχ̄Þt, Λ̂ ¼ (ðΛ−
χ ;Λþ

χ Þt; ðΛ−
χ̄ ;−Λþ

χ̄ Þt), 1 ¼
ð1; 0Þt, and χ̄ ¼ −χ (ϒ̂ is obtained from Λ̂ via the sub-
stitution Λ�

χ → ϒ∓
χ ). The kernels Λ�

χ and ϒ∓
χ are cumber-

some functions of symmetric and skew cross sections
defined by Γχχ0 ¼ðni=2πÞ

R
Sd2k0T k0

χ0kχ
f1;cosϕ;sinϕgt,

with ϕ ¼ ϕk0 − ϕk [37]. Considering the two valleys, the
general solution involves 16 cross sections. The exact form
of the kernels is essential to correctly determine the energy
dependence of the conductivity tensor. As shown in the
Supplemental Material [37], including a magnetic fieldB ¼
Bẑ only requires the substitution Γsin

χχ → Γsin
χχ þ ωχ , where

ωχ ¼ kχv−1χ B is the cyclotron frequency associated with the
ring states. At T ¼ 0, accounting for the valley degeneracy,
we obtain the transverse response functions

σc;s⊥ ðB; ϵÞ ¼ −e
h

X
χ¼�1

kχðϵÞhJc;sðϵÞiχτ⊥χ ðϵ;BÞ; ð7Þ

where hJfc;sgðϵÞiχ ¼ −ehf1; sz=2gΣ · jẑ × Êjiχ denotes the
equilibrium transverse charge (spin) current of plane-wave
states in the χ ring. The skew cross sections (and hence τ⊥χ )
are found to be nonzero (except for isolated points) and thus,

in the dilute regime, one has σc;s⊥ ∝ n−1i , which is a signa-
ture of skew scattering [20]. As discussed below, the
energy dependence of the skew cross sections is very
marked, reflecting the out-of-plane spin texture of con-
ducting electrons. For simplicity, in what follows, we
work at saturation field B ≥ Bsat such that the transverse
responses coincide with their “anomalous” parts, that is,
σAHðSHÞðBsat; ϵÞjδ ≃ σ⊥ð0; ϵÞjδsat , where δsat ¼ δ½MzðBsatÞ�
and Mz is the magnetization.
The change of sign.—Focusing on the regime λ≲ δ, we

show how, approaching low carrier density, electrons
undergoing spin-conserving and spin-flip scattering proc-
esses determine a change of sign in σc;s⊥ . For the sake of
illustration, we assume weak scatterers jg0u0j ≪ 1 and
restrict the analysis to intraring transitions within the outer
ring: kþ → k0þ (see additional discussions [37]). A first
scenario for the change of sign is as follows. First, we note
that as k is increased from k ¼ 0, electron states in the
lower band ν ¼ −1 progressively change their spin ori-
entation from effective spin-up to spin-down states (see
Fig. 1). Starting from ϵI, varying ϵ instead, it can be verified
that the same occurs within the outer ring, such that by
tuning ϵ one can switch between states with opposite spin
polarization. As effective up and down states are associated
with an opposite effective spin-Lorentz force (i.e., skew
cross sections with opposite signs), this also means
conducting electrons can be selectively deflected towards
opposite boundaries of the system. The associated anoma-
lous Hall (AH) voltage and SHE spin accumulation will
then display the characteristic change of sign [Fig. 2(a)].
A second scenario involves the spin-flip force and does

not require changing the polarization of carriers. Instead,
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FIG. 2. Energy dependence of AHE and SHE. (a) σc;s⊥ ðϵÞ is
the result of the competing effective spin-Lorentz forces as
discussed in the main text [see also Fig. 1(e)]. The change of
sign is more prominent for large SOC. (b) σc⊥ðneÞ, where
ne ¼ πfk2þ − k2−; k2þ; k2þ þ k2−g, respectively, in regions I–III.
(c) While less evident in the unitary limit, the change of sign
is robust across all scattering regimes. δ ¼ 30 meV, λ0 ¼ δ=3,
v0 ¼ u0 ¼ 1 eV nm2, ux ¼ 0, and n0 ¼ 1012 cm−2.
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what changes when varying ϵ is the ratio of spin-flip to
elastic skew cross sections. This also produces a change of
sign as depicted in Fig. 1(e); the fate of the transverse
conductivity will depend ultimately on the competition
between the two effective spin-Lorentz forces (see the
Supplemental Material [37]). The change of sign in σc;s⊥ is a
persistent feature as long as SOC and MEC are comparable
[Fig. 2(a)]. In that case, the noncollinear spin texture is well
developed, such that, on one hand, it is possible to
interchange between effective spin-up and spin-down
states “S ¼ ↑, ↓ ¼ −S̄” using a gate voltage, and on
the other, both spin-conserving “hSjVðxÞjSi” and spin-flip
“hS̄jVðxÞjSi” scattering matrix elements are nonzero.
Asymptotically, ϵ ≫ δ, λ, the AH signal must vanish due
to the opposite spin orientation of electron states belonging
to ν¼�1 bands, which produce vanishing small total
magnetization SzðϵÞ ¼ P

χS
z
χ ≪ 1. In comparison, the

staggered field experienced by charge carriers SzstagðϵÞ ¼P
χχS

z
χ has slower asymptotic decay (for λ≲ δ), implying

that the SHE is more robust than the AHE.
Approaching the QAHE.—The system realizes the

QAHE, provided the gap remains robust against disorder,
σc⊥ðϵ < ϵIÞ ¼ 2e2=h, σs⊥ðϵ < ϵIÞ ¼ 0. In the metallic
regime, the Berry curvature of occupied states also provide
a (nonquantized) intrinsic contribution to the transverse
conductivity. Below, we discuss how robust is the change of
sign to the inclusion of other factors and also how the
quantized region is approached. First, consider that, in the
strong scattering limit jg0u0j≫1, the rate of inter-ring
transitions increases and the one-ring scenario presented
above might break down. However, as shown in Fig. 2(c)
the change of sign is still visible. In real samples, structural
defects and short-range impurities, such as hydrocarbons
[45], induce scattering between inequivalent valleys,
thereby opening the backscattering channel [34]. In fact,
spin precession measurements in graphene with interface-
induced SOC indicate that the in-plane spin dynamics is
sensitive to intervalley scattering [46–48]. To determine the
impact of intervalley processes on dc transport, we solved
the BTEs for arbitrary ratio ux=u0. Figure 2(c) shows the
AH conductivity for selected values of ux (dashed lines).
σc⊥ is strongly impacted, showing a 50% reduction when
intra- and intervalley scattering processes are equally
probable (ux ¼ u0). However, the sign change in σ⊥,
approaching the majority spin band edge ϵ ≈ ϵII, is
still clearly visible. Further analysis is given in the
Supplemental Material [37], where we also analyze the
impact of thermal fluctuations, concluding that the features
described above are persistent up to kBT ≈ kBTroom=2 ≃
12 meV for λ ≈ δ ¼ 30 meV. A thorough numerical analy-
sis in the strong SOC regime provides an estimation for ϵ0,
defined as σ⊥ðϵ0Þ ¼ 0,

ϵ0 ¼ aϵI þ bϵIII; ð8Þ

with a ≃ 0.3–0.4 and b ≃ 0.6–0.8. This relation shows that
the knowledge of δ (e.g., from the Curie temperature [4])
allows us to estimate the SOC strength directly from the
gate voltage dependence of the AH resistance. The values
σ⊥ ≈ 0.1–1 (e2=h) are compatible with the measurements
in Refs. [4,5], for a reasonable choice of parameters, 0 ≤ λ,
δ ≤ 30 meV in the dirty regime with ni ¼ 1012 cm2

and u0 ∼ ð0.1; 1Þ eV nm2. In high-mobility samples, our
theory predicts that the robust skew scattering contribu-
tion with σ⊥ ∝ n−1i results in much larger values σ⊥ ≈
10–100 (e2=h).
Intrinsic contribution and total AH conductivity.—We

now report our results for the intrinsic contribution. Pre-
vious studies—where the topological nature of the model
was also first pointed out [11]—tackled the problem
numerically, also with a focus on the regime δ ≫ λ. We
go beyond this limitation, performing an exact analytic
evaluation of the intrinsic AH conductivity. Starting from
the chiral eigenstates of Eq. (3), we obtain the Berry
curvature of the bands as Ωn

k ¼ ð∇k ×An
kÞz, whereAn

k ¼
−ihnkj∇kjnki and n≡ ðμ; νÞ is a combined band index
[49]. The transverse conductivity is obtained via integration
of the Berry curvatures [50], σint⊥ ¼ P

n

P
k Ωn

kf
0
kn
. Note

that
P

nΩn
k ¼ 0 and

P
k

P
n<0Ωn

k ¼ 2e2=h, which is the
case when ϵ is tuned into the gap. The full form of An

k
is reported in Ref. [37], where we also show that the
intrinsic contribution can be equivalently obtained from
the clean limit of the Kubo-Streda formula. The result is
plotted in the inset of Fig. 3(b), while Fig. 3(a) shows the
opposite-in-sign Berry curvatures for the bands n ¼ −1
and −2. Similar to the situation presented for the extrinsic
contribution, we find the intrinsic term also presents a
peculiar change of sign under the same condition λ >
λc ≈ δ=6 [see Fig. 2(a)], where λc is a critical value for the
Bychov-Rashba strength. The effect in this case is ascribed
to the profile of the Berry curvatures; in particular, in the

(a) (b)

FIG. 3. Intrinsic contribution and total AH conductivity. (a) The
Berry curvatures of hole bands n ¼ −1;−2. Note that Ωn¼−1ðkÞ
develops additional “hot spots” as SOC is increased. (b) The total
σtot⊥ ¼ σ⊥ þ σint⊥ at selected values of λ; same legend as in (a).
(b) Adding the intrinsic contribution (inset) to σ⊥ leaves the
estimate for ϵ0 [Eq. (8)] virtually unaffected. Parameters:
u0 ¼ 10 eV nm2, ni ¼ 1012 cm−2, and δ ¼ 30 meV.
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electron sector, the change of sign happens for ϵ ¼ ϵ̃0
solution of the self-consistent equation

I1jkþk− ðϵ̃0Þ þ θϵ̃0;ϵIII1jkþ0 ðϵ̃0Þ þ θϵ̃0;ϵIIII2jk−0 ðϵ̃0Þ ¼ −
2e2

h
; ð9Þ

where IijbaðϵÞ≡
R bðϵÞ
aðϵÞ dkkΩ

i
k and θϵa;ϵb ¼ θðϵa − ϵbÞ is the

Heaviside step function. In Fig. 3(b), we show the total
AH conductivity, given by σtot⊥ ¼ σint⊥ þ σc⊥. Remarkably,
we find ϵ̃0 ≃ ϵ0, such that our estimate for the AHE
reversal energy (ϵ0) in Eq. (8) is still accurate when all
contributions are added [cf. Fig. 3(b) and inset]. This robust
energy dependence in the AHE and SHE transverse
response functions connects the skew scattering mecha-
nism, unveiled in this work, to the intrinsic properties of
magnetized 2D Dirac bands.
No new data were collected in the course of this

research.
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