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We argue that a correlated fluid of electrons and holes can exhibit a fractional quantum Hall effect at zero
magnetic field analogous to the Laughlin state at filling 1=m. We introduce a variant of the Laughlin wave
function for electrons and holes and show that form ¼ 1 it is the exact ground state of a free fermion model
that describes px þ ipy excitonic pairing. For m > 1 we develop a simple composite fermion mean field
theory, and we present evidence that our wave function correctly describes this phase. We derive an
interacting Hamiltonian for which our wave function is the exact ground state, and we present physical
arguments that the m ¼ 3 state can be realized in a system in which energy bands with angular momentum
that differ by 3 cross at the Fermi energy. This leads to a gapless state with ðpx þ ipyÞ3 excitonic pairing,
which we argue is conducive to forming the fractional excitonic insulator in the presence of interactions.
Prospects for numerics on model systems and band structure engineering to realize this phase in real
materials are discussed.
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The quantum Hall effect was originally understood as a
consequence of the emergence of Landau levels for two
dimensional electrons in a magnetic field [1], but was
reformulated in the framework of topological band theory
[2]. This introduced the notion of “Chern bands,” which
have a rich structure due to the interplay between lattice
translations and magnetic translations [3], and allow for the
existence of a Chern insulator in the absence of a uniform
magnetic field [4]. There is a sense in which all quantum
Hall states are the same and can be adiabatically connected
to a flat band limit that resembles a Landau level. However,
the opposite to the flat band limit occurs near a quantum
Hall transition, which occurs when the conduction band
and valence band invert at a Dirac point [5]. A weakly
inverted quantum Hall state differs from a trivial insulator
only near the Dirac point, and can be viewed as a quantum
fluid formed by the low energy electrons and holes of the
original trivial insulator. The band inversion paradigm has
proven to be a powerful tool for engineering topological
phases of noninteracting fermions [6–9].
In recent years there has been effort to study analogs of

the Chern insulator for the fractional quantum Hall (FQH)
effect. Theoretical work has focused on the proposal for
creating nearly flat Chern bands [10–12] that can be
fractionally filled and can host states—called fractional
Chern insulators [13]—that resemble the Laughlin state of
a fractionally filled Landau level (see the reviews [14–16]
and references therein). Experimental progress has been
reported in twisted bilayer graphene [17], where the
commensuration with the moiré pattern leads to interesting
structure in the observed FQH states at finite magnetic
field. The zero field fractional Chern insulator is more
challenging because it requires a nonstoichiometric band

filling. Here we consider the opposite limit and propose a
wave function describing a fractional excitonic insulator: a
gapped FQH state built from a strongly correlated fluid
of electrons and holes. We argue that this provides an
alternative route to realizing a FQH state at zero field in a
stoichiometric system that is close to a special kind of band
inversion.
We consider a wave function inspired by the celebrated

Laughlin wave function [18] of the form

jΨmi ¼
X
N

fN

N!
jψN

mi; ð1Þ

where jψN
mi describes a state with N electrons and holes

described by a Jastrow wave function

ψN
mðfzi; wjgÞ ¼

Q
i<i0 ðzi − zi0 Þm

Q
j<j0 ðwj − wj0 ÞmQ

i;jðzi − wjÞm
: ð2Þ

Here z1;…;N (w1;…;N) are complex coordinates for
electrons (holes) and m is an odd integer. ψN

m is similar
to a Halperin bilayer wave function [19], except that the
Gaussian associated with the lowest Landau level is absent,
and it has a singular denominator. The denominator can be
fixed without changing the long distance behavior by
introducing a cutoff ξ in a prefactor

Q
ijhðjzi − wjj=ξÞ,

where hðx → 0Þ ∼ x2m and hðx → ∞Þ ¼ 1 [20]. A similar
wave function was mentioned by Dubail and Read [21] in
connection with tensor network trial states. Like them, we
will argue that jΨmi is topologically equivalent to a single
component ν ¼ 1=m Laughlin state.
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We will begin by showing that for m ¼ 1, jΨ1i (despite
the denominator) is the exact ground state of a simple
noninteracting model of a Chern insulator, and can be
viewed as a condensate of pþ ip excitons. We then present
several pieces of evidence that jΨm>1i describes a FQH
state. This includes an analysis of the Laughlin plasma
analogy, as well as the ground state degeneracy on a torus.
We introduce a composite fermion mean field theory as
well as a coupled wire model that reproduce the phenom-
enology of the FQH state. We also identify an interacting
Hamiltonian whose exact ground state is (2). Finally, we
propose that a feasible route towards realizing this state is to
find a material whose band structure features the touching
of two bands that differ in angular momentum by 3. We
argue that coupling the bands favors excitonic pairing in a
ðpx þ ipyÞ3 channel, and that interactions could stabilize
the m ¼ 3 state.
To describe the m ¼ 1 state, consider the noninteracting

spinless fermion Hamiltonian,

H1 ¼
X
k

ϵkðc†ekcek þ c†hkchkÞ þ Δkc
†
ekc

†
h−k þ H:c:; ð3Þ

with

ϵk ¼ ðk2 − v2Þ=2; Δk ¼ ivðkx − ikyÞ: ð4Þ

This is a two band model in which c†eðhÞk creates conduction
band electrons (valence band holes). We particle-hole
transformed the valence band, so that the vacuum j0i
(annihilated by ce;hk) is the topologically trivial filled
valence band. This model is properly regularized for
k → ∞, and describes a Chern insulator in which the
conduction and valence bands are inverted at k ¼ 0.
Note that (4) has a single parameter v [22]. The coefficient
of k2 can be fixed by a choice of units, but a more generic
model [23,24] has independent coefficients for the other
terms. For this particular choice, the energy eigenvalues are
�Ek ¼ �ðk2 þ v2Þ=2. The analysis of this model is similar
to the BCS theory of superconductivity. The ground state is

jΦm¼1i ¼
Y
k

ðuk þ vkc
†
ekc

†
h−kÞj0i; ð5Þ

where uk ¼ iðkx þ ikyÞ=
ffiffiffiffiffiffiffiffi
2Ek

p
and vk ¼ v=

ffiffiffiffiffiffiffiffi
2Ek

p
.

Following the Read Green analysis of a pþ ip super-
conductor [6], this can be written in the real space form as
follows:

jΦm¼1i ∝ e
R

d2zd2wgðz−wÞψ†
eðzÞψ†

hðwÞj0i; ð6Þ

where c†e;hk and gk ≡ vk=uk ¼ −iv=ðkx þ ikyÞ have

Fourier transforms ψ†
e;hðz ¼ xþ iyÞ and gðzÞ ¼ v=ð2πzÞ.

jΦm¼1i then has the form (1) with f ¼ v=ð2πÞ and

ϕN
m¼1ðfzi; wjgÞ ¼ det

�
1

zi − wj

�
: ð7Þ

The equivalence of ϕN
m¼1 and ψN

m¼1 follows from the
Cauchy determinant identity [25], which can be checked
by writing the determinant over a common denominator,
noting its units and antisymmetry.
Though the precise form of gðzÞ that makes the Jastrow

form exact is particular to our choice of parameters, the
topological structure of the Chern insulator dictates that the
1=z behavior for z → ∞ remains in a more generic theory.
The short distance behavior, however, depends on the
details as well as the lattice cutoff. A related model was
studied in Ref. [24], where the connection was made to a
Halperin ð1; 1;−1Þ bilayer state. Viewed as a bilayer
system, this is related to a (1,1,1) state by a particle-hole
transformation in one layer [26]. The (1,1,1) state describes
a single component “spin polarized” quantum Hall fluid
with broken spin symmetry. In our problem the spin
symmetry corresponds to the independent conservation
of electrons and holes, which is violated by the “pþ ip
pairing term” Δk. Thus, we can view the Chern insulator as
an excitonic insulator that is distinguished from the trivial
insulator by a condensation of pþ ip excitons. Unlike the
original excitonic insulator [27,28], this condensation does
not involve a spontaneously broken symmetry, since
electrons and holes are not independently conserved. It
is analogous to a proximitized pþ ip superconductor.
Encouraged by the success of jΨm¼1i, we now consider

the generalization to a fractional excitonic insulator. To
indicate that this should be possible, we first introduce a
composite fermion mean field theory. Consider a 2D, two
band system and perform a statistical gauge transformation
that attaches �ðm − 1Þ flux quanta to the electrons (holes)
[29]. This is accomplished in Eqs. (3) and (4) by replacing
kceðhÞk → ð−i∇� aÞψeðhÞ, where the statistical vector
potential satisfies the following:

∇ × a ¼ 2πðm − 1Þðψ†
eψe − ψ†

hψhÞ: ð8Þ

Equivalently, in a Lagrangian formulation, flux attachment
is implemented by adding a Chern-Simons term LCS ¼
ϵμνλaμ∂νaλ=½4πðm − 1Þ�≡ a∂a=4πðm − 1Þ [30]. This is
different from the conventional composite fermion model,
because, in the valence band, flux is attached to the holes
rather than the electrons. This transformation has no effect
on electrons deep in the valence band and is compatible
with exact particle-hole symmetry [31].
When the electron and hole densities are equal, the

average statistical flux seen by each particle is zero.
Thus, in mean field theory we can consider a system
of composite fermions with Hamiltonian given by (3)
and (4). Assuming the composite fermions are in a
Chern insulator phase, we integrate them out in the
presence of a and the external vector potential A. This
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leads to Leff ¼ LCS þ ðaþ AÞ∂ðaþ AÞ=4π. Integrating
out a then gives Leff ¼ A∂A=4πm. This shows that the
resulting phase is a FQH state with σxy ¼ ð1=mÞe2=h.
A second indication that this phase is possible is provided
by the coupled wire construction [32]. In Supplemental
Material Sec. I [33] we show that an array of alternating n-
type and p-type wires can support this phase at zero
magnetic field.
We now analyze the wave function of Eqs. (1) and (2).

To determine whether it describes a FQH fluid, we
follow Laughlin [18] and view hΨmjΨmi as the partition
function of a classical plasma. Like Laughlin’s plasma,
our charges interact by a 2D Coulomb interaction
−βV ¼ P

i<j2mqiqj log jzi − zjj=ξ, where m plays the
role of inverse temperature. Unlike Laughlin’s plasma,
our plasma has charges qi ¼ �1, and the neutralizing
background (due to the Gaussian) is absent. It is in the
grand canonical ensemble with a fugacity f. This plasma
maps precisely to the Kosterlitz Thouless problem [21,34],
and exhibits two phases: a high temperature phase char-
acterized by perfect screening, and a low temperature phase
with bound charges. For small f the transition is deter-
mined by balancing the energy m logL of an unbound
charge with the entropy logL2 giving a critical point at
m ¼ 2. For m ¼ 1 the plasma is in the screening phase,
which is consistent with our understanding of jΨ1i as a
quantum Hall state. For m ¼ 3 the plasma is in a bound
phase for small f. This is similar to the Laughlin wave
function for large m, which describes a crystal. However,
for larger f, screening renormalizes the Coulomb inter-
action, and a screening phase is expected above a critical
value of f, as indicated in Fig. 1. Since the only length in
the problem is the cutoff scale ξ, the screening phase will
occur at high density, when electrons and holes have a
typical separation of order ξ.
The structure of the plasma analogy is reminiscent of the

wire construction for the ν ¼ 1=m state [32], which
involves coupling edge states with an irrelevant sine-
Gordon type coupling that leads to exactly the same plasma
[33]. The correspondence of the plasmas is not an accident,
given the expectation that the ground state wave function

can be interpreted as a correlator of the same conformal
field theory that describes the edge states [35]. The only
difference with the conventional Laughlin state is the
absence of the background charge. Following this logic,
we construct a wave function for a quasihole at position Z as

ψe�
N ðZ; fzi; wjgÞ ¼

Y
i

Z − zi
Z − wi

ψNðfzi; wjgÞ: ð9Þ

In the plasma analogy, this state has an external charge
at Z. Assuming the plasma perfectly screens, this leads to a
charge e� ¼ e=m quasihole. Quasielectron states are con-
structed similarly by exchanging zi and wj.
Another probe of topological order is the ground state on

a torus, which may also be useful for numerical studies.
Following Haldane and Rezayi [36], we consider a torus
with z ¼ zþ L and z ¼ zþ Lτ identified (τ is a complex
number describing the shape of the torus). The periodic
generalization of (2) then involves two modifications. First,
the terms in the denominator become

ðzi − wjÞm → ϑ1(πðzi − wjÞ=LjτÞm; ð10Þ

where ϑ1ðujτÞ is the odd elliptic theta function [37]. The
terms in the numerator are modified similarly. Second, ψN

m
is multiplied by a function of the center of mass coordinates
Z ¼ P

izi, W ¼ P
jwj, given by

FCMðZ;WÞ ¼ eiKðZ−WÞϑ1ðπ½Z −W − z0�=LjτÞm: ð11Þ

From the periodicity properties of ϑ1ðujτÞ, it can be
checked that this modified wave function is properly
periodic, with K and z0 depending on the phase twisted
boundary conditions. For fixed boundary conditions there
arem independent choices forK and z0, establishing them-
fold ground state degeneracy. We have also checked that for
m ¼ 1 the noninteracting ground state of (4) on a torus has
the form det½gðzi − wjÞ�, with gðzÞ ∝ eiKzϑ1½πðz − z0Þ=
Ljτ�=ϑ1ðπz=LjτÞ. (K, z0 again depend on boundary con-
ditions.) A generalization of the Cauchy identity [38]
shows that this is precisely equivalent to the wave function
described above.
Having established that (1) and (2) describe an excitonic

fractional quantum Hall state, we now seek a Hamiltonian
that can realize it. One approach is to find an “exact
question to the answer”: a Hamiltonian designed to have
jΨmi as its exact ground state [39]. While we do not have an
analog of the two body δ-function type interaction [40] that
stabilizes the Laughlin state, we adopt the construction in
Ref. [41], which provides a natural generalization of (4) to
m > 1 at the price of introducing several-body interactions.
By applying ∂z�j

≡ 1
2
ð∂xj þ i∂yjÞ (or ∂=∂w�

j
) to (2) and

noting that due to analyticity only the poles contribute, we
show in Supplemental Material Sec. II [33] that the
operators

m1 2 3

f

Interaction 
strength

F
ug

ac
ity

FIG. 1. Kosterlitz Thouless renormalization group flow dia-
gram [34] for the plasma analogy of (1) and (2) as a function of
fugacity f and the coefficient of the Coulomb interaction, the bare
value of which is controlled by m.
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QeðzÞ ¼ 2∂z�ψe − vmψ
†
hð∂⃖z − iaÞm−1

QhðzÞ ¼ 2∂z�ψh − vmψ
†
eð∂⃖z þ iaÞm−1 ð12Þ

satisfy Qe;hðzÞjΨmi ¼ 0. Here vm ¼ 2πf=ðm − 1Þ!, and ∂⃖z

acts to the left on ψ†
h;eðzÞ and

aðzÞ ¼ m
Z

d2u
ρðuÞ

iðz − uÞ ; ρ ¼ ψ†
eψe − ψ†

hψh: ð13Þ

This can be interpreted as aðzÞ ¼ ax − iay, where a is a
statistical vector potential similar to (8), except with m
fluxes per particle, rather than m − 1. We then define

Hm ¼ 1

2

Z
d2z½Q†

eðzÞQeðzÞ þQ†
hðzÞQhðzÞ�: ð14Þ

Since Hm is the sum of positive operators, jΨmi is
guaranteed to be a ground state.
For m ¼ 1, Qe;hðzÞ is the Fourier transform offfiffiffiffiffiffiffiffi
2Ek

p
γe;hk, where γeðhÞk ¼ u�kceðhÞk � v�kc

†
hðeÞ−k are

Bogoliubov quasiparticle annihilation operators. It follows
that (14) reduces to (3) and (4) up to an additive constant.
For m > 1, (14) involves up to (2m − 1) body interactions.
While we have not proven thatHm has a gap, it is plausible
that it does, provided jΨmi is in the screening phase and has
short ranged correlations [42]. If so, then turning down the
several-body interactions will not immediately destroy the
state. This motivates a more practical strategy for realizing
this state.
Imagine turning off the interaction terms in (14), so that

Qe ¼ 2∂�
zψe − vm∂m−1

z ψ†
h. This leads to a noninteracting

Hamiltonian of the form (3), where for k → 0

ϵk ¼ k2=2; Δk ¼ vmðikx þ kyÞm=2m−1: ð15Þ

This describes a system with quadratically dispersing bands
that touch at k ¼ 0 and are coupled by angular momentum
m excitonic pairing. We now argue that this gapless
“ðpþ ipÞm pairing” state is a candidate for supporting a
fractional excitonic insulator in the presence of strong
repulsive interactions.
The ground state jΦmi of Eq. (3) with ϵk and Δk as

defined in Eq. (15) can be written in the form (6). Using
gk ∝ ðikx þ kyÞm=k2 for k ≪ ξ−1 the component with N
particles and holes has the form

ϕN
mðfzi;wjgÞ¼ det ½gðzi−wjÞ�; gðjzj≫ ξÞ∝ z−m: ð16Þ

If we multiply out the determinant and put it over a
common denominator, then ϕN

m gets the denominator in
(2) right—at least in the universal zi − wj ≫ ξ limit. The
numerator of ϕN

m is not the same as ψN
m, but if we use the

large z limit of gðzÞ then it will be a degree mNðN − 1Þ

polynomial. As a function of one of its variables (say z1) the
numerator has mðN − 1Þ zeros—the same as the numerator
of ψN

m. N − 1 of the zeros are guaranteed by Fermi statistics
to sit on z2;…;N , but the remaining ðm − 1ÞðN − 1Þ zeros are
“wasted” and sit between the particles. This is similar to a
1=m filled Landau level, where the magnetic field guar-
antees there are m times as many zeros as there are
particles. In that case, repulsive interactions stabilize the
Laughlin state, which puts the required zeros on top of the
particles. The above argument strictly applies to the dilute
limit, where electrons and holes are separated by more
than ξ, so jΨmi is in a bound phase. In the dense
limit, however, jΨmi is still more effective than jΦmi at
keeping the electrons (holes) apart, and it also builds in the
ðpþ ipÞm pairing of electrons and holes favored by (15). It
will be interesting to test our conjecture that (15), along
with strong repulsive interactions can stabilize the frac-
tional excitonic insulator state by the numerical analysis of
model systems.
Equation (15) presents an appealing target for band

structure engineering. It requires the crossing of two bands
that differ in angular momentum by m. For m ¼ 3 this can
occur at the Γ point in a crystal withC6 rotational symmetry
but broken time reversal and in-plane mirrors. For example,
this could arise if two bands with mj ¼ �3=2 touch at the
Fermi energy. Here we introduce a simple two band model
for spinless electrons that provides a starting point for
numerical studies.
Consider a triangular lattice with an s state and a single f

state with m ¼ 3 on each site. A Hamiltonian with first and
second neighbor hopping can be written as Eq. (3) with

ϵk ¼ ϵ0 − t0γ0ðkÞ; Δk ¼ t1γ1ðkÞ þ it2γ2ðkÞ; ð17Þ

where γ0ðkÞ ¼
P

n cosk · a1n, γ1ðkÞ ¼
P

nð−1Þn sink ·
a1n and γ2ðkÞ ¼

P
nð−1Þn sink · a2n. Here a1ð2Þn are the

6 first (second) neighbor lattice vectors at angles θ ¼
nπ=3ðþπ=6Þ. t0 connects nearest neighbors of the same
orbitals, while t1 and t2 connect first and second neighbor s
and f orbitals with an angle dependent phase e3iθ.
For −6 < ϵ0=t0 < 2 (17) is a Chern number 3 insulator.

Outside that range it is a trivial insulator. For ϵ0 ¼ 2t0
the gap closes at the 3 M points, while for ϵ0 ¼ −6t0 the
critical point is at Γ. While it is not our primary focus, the
Chern number 3 transition is of interest on its own. For
ϵ0 ¼ −6t0 þ δ the small k behavior is

ϵk ¼ δþ 3t0k2=2; Δk ¼ tþk3þ þ t−k3−; ð18Þ

with t� ¼ ðt1 � 3
ffiffiffi
3

p
t2Þ=8 and k� ¼ kx � iky. For δ > 0

the gap Eg ∝ δ is at k ¼ 0, but for δ < 0 Eg ∝ jδj3=2, and is
located on a “Fermi surface” of radius ∝ jδj1=2. The critical
point δ ¼ 0 has precisely the structure of (15) when t− ¼ 0
[22]. For nonzero t−, the vorticity 3 winding of Δk around
k ¼ 0 remains, so the long distance phase winding of gðzÞ
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is not altered. It will be interesting to study this model near
the transition to determine whether electron interactions
stabilize the fractional excitonic insulator by addressing
signatures such as ground state degeneracy, spectral
flow under flux insertion, and entanglement spectrum.
Importantly, in contrast to the case of fractional Chern
insulators, this model should be studied at integer filling
per unit cell.
In this Letter, we have introduced a paradigm for

achieving a FQH state in a correlated fluid of electrons
and holes described by a generalization of the Laughlin
wave function and characterized by ðpx þ ipyÞm excitonic
pairing. This points to several avenues for further inves-
tigation. It will be interesting to numerically study the
ground state properties of model Hamiltonians such as (17)
with interactions to establish the fractional excitonic
insulator phase. In parallel, it will be interesting to identify
materials with band structures that feature an m ¼ 3 band
inversion near the Fermi energy. Finally, the considerations
in this Letter can be generalized to describe multi-
component systems, superconductors, and symmetry pro-
tected topological phases.
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