
 

Observation of Nonlocal Heat Flux Using Thomson Scattering
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Nonlocal heat flux was measured in laser-produced coronal plasmas using a novel Thomson scattering
technique. The measured heat flux was smaller than the classical values inferred from the measured plasma
conditions in regions with large temperature gradients and agreed with classical values for weak gradients.
Vlasov-Fokker-Planck simulations self-consistently calculated the electron distribution functions used to
reproduce the measured Thomson scattering spectra and to determine the heat flux. Multigroup nonlocal
simulations overestimated the measured heat flux.

DOI: 10.1103/PhysRevLett.121.125001

In diverse fields of plasma physics, including astro-
physics, inertial confinement fusion, and magnetohydro-
dynamics, classical thermal transport [1,2] provides the
foundation for calculating heat flux [3–7]. The classical
theories of thermal transport by Spitzer-Härm (SH) [1] and
Braginskii [2] specify the heat flux by a local expression, in
terms of the thermal conductivity κ and the electron
temperature gradient (e.g., qSH ¼ −κ∇Te). This theory
breaks down in the presence of large temperature gradients
[8–11], turbulence [12], or return current instabilities
[13–16]: classical theory does not include nonlocal effects
where energetic electrons travel distances comparable with
the temperature scale length before colliding.
Local thermal transport theories [1,2] follow from a

perturbative solution of a kinetic equation in terms of the
collision parameter λei=LT ≪ 1, where λei is the electron-
ion (e-i) mean free path and LT ¼ j∇ lnðTeÞj−1 is the scale
length of the temperature gradient. Nonlocal theories
overcome limitations of classical theory by accounting
for the range of electron-ion mean free paths associated
with different electron velocities. By extending closure
relations for hydrodynamic models into the kinetic regime
of weak collisions, these theories [17–24] have established
the limits of classical transport (λei=LT ∼ 10−2).
In laser-produced plasmas, classical theory predicts

unphysically large thermal transport and hydrodynamic
simulations of these plasmas require an ad hoc limiter on
the heat flux to match experimental observables. His-
torically, these limiters were set by kinetic simulations
[17,25–27], integrated experiments [10,11,28,29], or
more-focused Thomson scattering (TS) measurements of
the local plasma conditions (i.e., electron temperature and
density) [8,13,30,31]. More recently, the nonlocal Schurtz,
Nicolaï, and Busquet (SNB) model [23] was introduced as

a computationally efficient method for calculating the
nonlocal heat flux in large-scale multidimensional hydro-
dynamic simulations. Experiments that attempt to measure
nonlocal transport have, however, been limited to indirect
observations [8,24,30–32].
In this Letter, we present the first direct measurement of

nonlocal heat flux. A novel implementation of collective
Thomson scattering measured heat flux by probing the
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FIG. 1. (a) Calculated Thomson-scattering features (red curve,
right axis) from electron plasma waves [Eq. (1)] are shown
(vϕ ¼ ω=k) using a Maxwellian (solid blue curve, left axis)
electron distribution function and the non-Maxwellian (dashed
blue curve) distribution that accounts for classical SH heat flux
(λei=LT ¼ 2.2 × 10−3, q=qFS ¼ 3%). Inset: For a fixed normal-
ized phase velocity, the ratio (R) of the peak scattered power of
the up- and downshifted features are shown for calculations that
use classical SH (solid curve, top axis) and nonlocal (dashed
curve, bottom axis) distribution functions over a range of heat
flux. (b) A schematic of the setup is shown.
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relative spectral amplitudes of electron plasma waves
[Fig. 1(a)]. In addition to the heat flux, the plasma-wave
spectrum provided a measurement of the plasma temper-
ature and density profiles. The profiles were used to
calculate the classical SH heat flux, which was in good
agreement with the measured heat flux far from the target
where the temperature scale length was longer than the
electron-ion mean free path of heat-carrying electrons
(λei=LT ∼ 7 × 10−3). For steeper gradients, the measured
heat flux was up to a factor of 2 smaller than the classical
values as a result of nonlocal transport. For the most
nonlocal conditions, the SNB model predicted an inhibited
heat flux compared with the classical values but still
overestimated the measured heat flux by ∼40%. In the
region where classical SH theory agrees with the measured
heat flux, the SNB model overestimates the flux.
Figure 1 illustrates the effect of heat flux on the

collective Thomson scattering spectrum. Two scattering
spectra, calculated with and without SH heat flux, dem-
onstrate the sensitivity of the Thomson scattering
spectrum to the shape of the electron distribution function.
The SH distribution function was derived from the
lowest-order terms in the perturbative solution of the
kinetic equation, fSHðvÞ¼ fM0 ðvÞþ cosθfðvÞ, where fðvÞ¼
λei=LT

ffiffiffiffiffiffiffiffiffiffi
2=9π

p ðv=vteÞ4ð4−v2=2v2teÞfM0 ðvÞ, vte ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p

is the electron thermal velocity, fM0 is a Maxwellian
velocity distribution function, and θ is the angle between
electron velocity and the temperature gradient. The
Thomson scattering spectra were calculated in the high-
frequency limit where the ion dynamics can be ignored [33]

Sðk;ωÞ ¼ 2π

k
f̃eðω=kÞ
jϵðk;ωÞj2 ; ð1Þ

where ϵðk;ωÞ is the longitudinal plasma dielectric function
and the probed wave vector (frequency) is the difference
between the incident and scattered wave vectors (frequen-
cies), k ¼ ki − ksðω ¼ ωi − ωsÞ. The one-dimensional
distribution function f̃eðvÞ is determined by integrating
the full distribution function over velocities perpendicular to
the probed wave vector. At the Langmuir wave resonance
defined by ϵðk;ωÞ ¼ 0, ωðkÞ ¼ �ωLðkÞ þ iγLðkÞ, where,
in general, the Landau damping rate γL is proportional to
∂f̃e=∂vjv¼ωL=k and ωL is approximately the resonant fre-
quency for Langmuir fluctuations. The collisionless
approximation of Sðk;ωÞ in Eq. (1) is valid for these
experiments as the scale of the probed waves (∼1=k) is
small compared to the electron–ion mean free path such
that kλei ≫ 1.
The Fig. 1 inset shows the sensitivity of the amplitude

ratio of the up- and downshifted (red- and blueshifted,
respectively) scattered peaks to heat flux (normalized to the
free-streaming (FS) flux, qFS ¼ neTevte), where SH or
nonlocal distribution functions were used to calculate the
Thomson scattering spectrum. It is evident from Eq. (1) that

heat flux has two effects on the scattered power near the
resonance: (1) the amplitude depends on the number of
electrons at the resonance [f̃eðωL=kÞ] and (2) the width is
given by the slope of the electron distribution function at
the resonance ∂f̃e=∂vjv¼ωL=k. Therefore, to maximize the
effect of heat flux on the scattered power, the scattering
geometry was chosen to probe Langmuir waves propagat-
ing along the target normal where the temperature gradient
is the largest, kk −∇Te, and with phase velocities near the
region of the electron distribution function with the most
heat-carrying electrons, ωL=k≳ 3.4vte. For this geometry,
it was demonstrated in theory [34] that the Langmuir
fluctuations that contribute to the redshifted peak in the
Thomson scattering spectrum experience increased Landau
damping, while the oppositely propagating Langmuir
waves that contribute to the blueshifted peak become less
damped.
The experiment was conducted at the Omega Laser

Facility [35] at the University of Rochester’s Laboratory for
Laser Energetics and used six λ3ω ¼ 351-nm beams to
produce a blow off plasma from a planar aluminum target.
Each beam had 250 J in a 2-ns flat top pulse. Phase plates
[36] were used to set the profile of the laser spot at the target
plane to be a high-order super-Gaussian (n ¼ 4.6) with a
full width at half maximum of 560 μm. The six beams with
the smallest angle of incidence (8°, 29°, 32°, 33°, 35°, and
40°) were chosen to produce the plasma [Fig. 1(b)]. The
Thomson-scattering diagnostic [37] consisted of a 40-J,
2-ns-long, λ2ω ¼ 526.5-nm probe beam with a best-focus
diameter of ∼50 μm [38]. The light scattered from a
50 × 50 × 50 − μm volume was imaged through a 1=3-m
spectrometer onto a streak camera. The spectral dispersion
was 0.411 nm=pxl� 0.4%. The system had spectral and
temporal resolutions of 0.5 nm� 5% and 20 ps� 0.5%,
respectively. The scattering angle was 60°. The scattering
volume was set to five different locations along the target
normal ranging from 1.1 to 1.5 mm from the initial target
surface. To account for the bremsstrahlung radiation
collected by the Thomson-scattering system, a background
was established at each location by turning off the
Thomson scattering probe beam and was subtracted from
the corresponding spectrum.
Figure 2 shows the collective Thomson-scattering spec-

tra measured at each of the probed locations. The data were
fit with a fully kinetic Thomson-scattered power spectrum
[33] that includes relativistic effects [39] and incorporates a
non-Maxwellian electron distribution function to provide a
measure of the heat flux, electron temperature, and density
[34]. To a good approximation, the relative amplitudes of
the electron-plasma wave features are given by heat flux,
the frequency of the electron plasma-wave feature by the
density, and the width of the plasma wave feature by the
electron temperature.
The insets in Fig. 2 compare scattered spectra calculated

using non-Maxwellian electron distribution functions,
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consistent with thermal transport, with Maxwellian electron
distribution functions. The excellent quality of the fits over
the complete spectrum indicate the high accuracy of the
shape of the distribution functions used. The significant
deviation from the measured spectra that occurs when not
accounting for the effects of heat flux (i.e., Maxwellian
distribution functions) shows the sensitivity of the meas-
urement. The non-Maxwellian distribution functions were
determined from a Fokker-Planck simulation [40] where
the electron temperature and density profiles were con-
structed to equal the measured values. Discrepancies
between the shape of the measured and calculated spectra
at the locations closest to the target suggest that the
simulations do not accurately reproduce the electron dis-
tribution function far from the resonance and suggest that
more work is needed.
Figure 3 shows the resulting heat flux measurements

at the five probed locations obtained by integrating the
electron distribution functions used to fit the Thomson-
scattering (TS) spectrum ½qTS ¼

R
1
2
mv2vfeðvÞd3v�. The

measured heat flux is compared to classical heat flux values
(qSH ¼ −κ∇Te) determined by calculating the Spitzer
thermal conductivity and the local temperature gradient
from the measured plasma profiles (Fig. 4). Excellent
agreement between the classical and measured heat flux
is observed for the location farthest from the target surface,
but for locations closer to the target surface, the measured
flux is smaller than the classical values. This difference
highlights the nonlocal nature of the thermal transport.
Figure 4 presents the measured electron temperature and

density profiles determined from fitting the blueshifted
features with the Thomson-scattering power spectrum,
assuming Maxwellian electron distribution functions
(Fig. 2). The electron temperature decreased from

1.27� 0.04 to 1.12� 0.04 keV over 400 μm. The electron
temperature gradient at each measurement location was
determined by fitting a fifth-order polynomial to the
measurements. The uncertainty in the temperature gradient
was calculated by varying the data within the relative
error bars, which were used to calculate the errors in the
classical heat flux (Fig. 3). Over this same distance, the
electron density dropped from 8.36� 0.04 × 1019 cm−3 to
2.63 � 0.01 × 1019 cm−3. The high signal-to-noise ratio in
the measured spectra resulted in excellent χ2 statistical fits,

FIG. 3. The heat flux (red points) measured along the target
normal is compared with classical heat flux (SH) calculations
(blue points) and heat flux values (black points) obtained from
the simulations using the SNB model. Both the simulations and
calculations were initiated with the measured electron temper-
atures and densities. For reference, λei=LT ¼ 1.4 × 10−2,
1.4 × 10−2, 1.3 × 10−2, 1.0 × 10−2, 7 × 10−3 at 1.1, 1.2, 1.3,
1.4, and 1.5 mm, respectively.

FIG. 2. The measured collective Thomson-scattering spectra (top row) and the corresponding spectral profiles (blue dots) at 1.5 ns
(bottom row). The data were fit (red curves) with Eq. (1) using non-Maxwellian electron distribution functions to measure heat flux.
Insets: The redshifted features are shown with calculations (black curves) that used the plasma conditions from the fit but a Maxwellian
electron distribution function. These spectra recover the location of the scattering features but fail to match their amplitudes. At 1.5 mm,
the spectrum was fit (dashed curve) with calculations that use a distribution function consistent with classical SH theory. All spectra are
normalized to the peak scattered power.
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which determined the 1σ statistical relative error bars shown
in Fig. 4. The absolute errors in the electron temperature and
density were dominated by uncertainties in the spectral
dispersion and resolution. Adding these errors in quadrature
resulted in a 2% and 3% absolute error in the density and
temperature, respectively.
For the measurement farthest from the target surface

(1.5 mm), the Thomson scattering spectrum calculated
using the electron distribution function determined by
classical SH theory, where λei=LT ¼ 7 × 10−3, was in good
agreement (Fig. 2). This is consistent with the agreement in
the measured heat flux at this location presented in Fig. 3.
Although the classical SH distribution function allows the
amplitudes of the spectral peaks to be reproduced, the fit
shows a discrepancy in the width of the redshifted peak
suggesting that the shape of the SH electron distribution
function moving away from the resonance is incorrect. For
locations closer to the target, the electron distribution
function predicted by classical theory becomes negative
at velocities around the Langmuir wave resonances, and
classical theory cannot be used to fit the measured
spectrum. This is consistent with the measured heat flux
being significantly less than the classical values (Fig. 3). At
these locations λei=LT > 10−3, which confirms, experi-
mentally, the limit of validity previously determined by
nonlocal theories [17–22].
To determine the electron distribution functions consis-

tent with nonlocal transport, the K2 Vlasov-Fokker-Planck
code [40] was used. K2 uses a Legendre polynomial
representation of the electron distribution function,
fðt; x; vÞ ¼ P

nfnðt; x; vÞPnðθÞ where x is the direction
along the target normal. K2 solves for the self-consistent
electric field and includes the effects of electron-ion

scattering and electron-electron collisions. To capture the
fine detail in the distribution functions at high velocities,
close to the Langmuir wave resonances, polynomials up to
and including f8 were required.
In all calculations, the plasma profiles were initially set

to the measurements (Fig. 4). The temperature of the region
between the target and 500 μmwas constant and was varied
from 1.2 and 2 keV in different runs. Since the transport is
nonlocal, the choice of boundary condition is important to
determine heat flow at the edge of the measurement region
(i.e., 1.1 mm) but has a small effect at the other measure-
ment positions. Once the initial conditions were set, the K2

code evolved the distribution function in time and, after a
few collision times, reached steady state. Over this time, a
small amount of heating or cooling was applied to the
electrons to help maintain the temperature profile close to
the measured (i.e., initial) values. This approximately
accounted for the small amount of ongoing thermal
compression or expansion in the coronal region. As the
hydrodynamic motion is slow compared to the electron
thermal transport, it was ignored. For each boundary
condition, the electron distribution functions at each
measurement position were used in Eq. (1) to calculate
Thomson scattering spectra. The boundary condition
(1.8 keV) that generated the Thomson scattering spectra
with the best match across all locations was used to
determine the measured heat flux. A given distribution
function produces a unique scattering spectrum, but in
practice, signal-to-noise and dynamic range limit measure-
ments to regions around the resonances.
The measured heat flux was compared to calculations

that used the multigroup nonlocal SNB model (Fig. 3),
initialized with the measured electron temperature and
density profiles (Fig. 4). In the nonlocal region, where
classical SH theory overestimates the flux, the SNB model
calculates a flux that is about halfway between the classical
and measured values. In the region where classical trans-
port is valid (1.5 mm), the SNB model overestimates
the flux. Furthermore, in the nonlocal transport regions,
the electron distribution functions were negative around the
electron-plasma wave resonance, which made it impossible
to fit the measured Thomson scattering spectrum.
Figure 5 shows the flux contribution of electrons for each

of the models at 1.2 mm from the target surface. According
to the K2 model, the reduction in heat flux relative to the
classical model at this location occurs due to a reduction in
the flux of electrons with v ≳3.4 vte. Furthermore, the peak
heat flow occurs at a lower velocity (vK2 ≈ 3.5 vte) relative
to the classical result (vSH ≈ 3.7 vte). The SNB model
slightly inhibits the flux but still overpredicts the heat flow.
The heat flux at this location is ∼60% of the classical value.
In summary, Thomson scattering was used to measure

the heat flux directly from the amplitudes of the Langmuir
fluctuations and indirectly through the electron temperature
and density profiles (qSH ¼ −κ∇Te). The measured heat

FIG. 4. Electron temperature (blue dots, left axis) and density
(red squares, right axis) measurements at t ¼ 1.5 ns. Profiles of
electron temperature (dashed blue curve) and density (solid red
curve) used in Fokker-Planck simulations. The relative (1σ
statistical) error bars are shown with the temperature measure-
ments. The absolute error bars are represented in the inset.
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flux agreed with classical SH values when λei=LT < 10−3,
but in the opposite limit (λei > 10−3), the differences were
as large as a factor of 2. The multigroup nonlocal SNB
model overpredicted the flux in all regions which demon-
strates the need to include physics often missing from
computationally expedient nonlocal models, most notably
high-order polynomials for properly resolving velocity
space, the self-consistent electric field, and a Fokker-
Plank collision operator.
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