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Simulations of particle-laden flow with dielectric particles are carried out with varying levels of
electrical charging and particle polarization. Simulation results reveal three distinct flow regions. For low
particle charge and polarizability, flow is nearly symmetric and nonmeandering. For strong charging and
polarization, particles form a continuous and tightly clustered sheet close to one of the walls. Between these
extremes, particles form localized particle-rich regions, around which the gas executes a meandering flow.
These results indicate that polarization can lead to qualitative changes in the characteristics of particle-laden
flows subject to tribocharging.
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In this Letter, we examine the effects of particle polar-
izability on particle-laden flow dynamics. We find that
including polarizability produces new and distinct flow
regimes in contrast to prior studies that have neglected
polarization and consider only neutral or electrically
charged particles [1–10]. Since the most pronounced effects
of electrical charge are seen in insulating materials and
since insulating materials tend to polarize, the study of the
effects of polarization is relevant not only to flow and
particle elutriation characteristics in gas-fluidized beds of
particles [11,12], but also to a broad range of other
applications involving charging of insulators.
For example, terrestrial and extraterrestrial dust devils

involve insulating materials that charge strongly [13–15],
as do mineral dust aerosols [16]. In industrial applications,
likewise, spontaneous self-organization associated with
particle charging has been reported in microelectronic
manufacturing [17] as well as in structural evolution in
carbon nanotubes [18,19]. Furthermore, in polyethylene-
fluidized bed reactors, particle charging has been linked to
particles adhering on reactor walls, known as sheeting
[20,21], which causes costly reactor shutdowns and is an
ongoing issue in polymer production [22]. Furthermore,
there has recently been rapid growth in new applications
involving charged insulators, such as triboelectric nano-
generators that have been proposed for renewable energy
production [23]. Many of these applications involve
insulating materials, and findings of this Letter may be
germane.
In previous work, Siu et al. [24] investigated the

behavior of granular materials in strong electric fields.
They found that applied fields can cause particles to
produce novel behaviors ranging from static columns to
moving ribbons that are not explained by static charges
alone. An experimental study of LaMarche et al. [25] also
showed that the electric field created by a tribocharged

Teflon sheet is enough to cause significant dielectropho-
retic interactions, and suggested that triboelectrification
present in granular flows could lead to similar effects.
Furthermore, a recent article by Lee et al. [26] investigated
clustering of triboelectrically charged particles during free
fall in vacuum and concluded that dielectrophoresis asso-
ciated with particle charges plays an important role in
particle dynamics and agglomerate formation. In addition,
recent fluidization experiments by Fotovat et al. [11,12]
revealed weaker entrainment with insulating particles than
with conducting particles having otherwise similar particle
properties, reinforcing the view that more comprehensive
study of particle polarization is merited. Intriguingly, Feng
[27] has even reported that complex electrostatic inter-
actions can cause like-charged dielectric particles to attract
one another.
In this Letter, we quantify effects of particle polar-

izability on dynamics of gas-solid flows by simulating a
simple vertical periodic channel, where dielectric particles
are fluidized by an upward ambient fluid flow against
downward gravity. As we will show, dielectric influences
produce distinct flow regimes that would not be seen by
considering Coulomb forces alone.
We simulate a fluidized bed with periodic boundaries in

the vertical and in one horizontal direction; in the remaining
horizontal direction we fix conducting impermeable walls.
The driving gas pressure drop ΔPg, in the vertical direction
that supports the particles is adjusted to keep the mean
vertical solids flux zero in all simulations. In this Letter, we
present simulation results for spherical particles with
diameter dp ¼ 150 μm. The channel is square in cross
section, with dimensions 30dp × 30dp × 120dp, and the
domain-averaged solid fraction hϕsi ¼ 0.1.
Triboelectrification occurs when a particle collides with

other particles or with the channel walls. The triboelectric
charging is modeled by following Laurentie et al. [28], in
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which the charge transfer is driven by a difference in the
effective work function φ that depends on the materials
under consideration and the electrical potential difference
between the contacting surfaces. This charging model has
been found to capture particle charging in a granular chute
[29] and in a vibrated granular bed [28,30]. In this model,
the effective work function is a lumped parameter that can
be determined either empirically [28] or using density
functional theory [29].
In the present study, all particles are made of the same

material, while thewall ismade of a differentmaterial so that
there is an effective work function difference Δφ between
the particles and wall. The maximum charge that a particle
may obtain during a collision with thewall, referred to as the
equilibrium charge qeq, can be related to the effective work
function difference by qeq ¼ 1

2
πε0Δφd2p=ðδceþÞ [10]. Here,

ε0 is the vacuum permittivity, δc is the electron tunneling
distance (taken to be 500 nm in this study), and eþ > 0 is the
elementary charge.We characterize the extent of Coulombic
interactions using the nondimensional number e=g ∝ Δφ2, a
shorthand for the ratio of the Coulomb forces at the contact
between particles with charges �qeq to the weight of a
particle, mpg (for details, see Supplemental Material [31]).
We model the induced polarization on particles by

applying a simple dielectric polarization law: P ¼ ε0χE,
where P is the polarization density, E is the electric field,
and χ is the particle susceptibility. The electric dipole
moment p of a particle is then p ¼ R

Vp
pdV ≈ ε0αpVpE,

where αp is the (dimensionless) polarizability of the
particle and Vp is its volume. In this way, particle charges
are governed by the wall-particle work function difference
Δφ, and polarization is governed by the polarizability αp.
Particle and fluid dynamics are solved using an Euler-

Lagrange approach, where the locally averaged equations
of motion for the fluid phase are solved in an Eulerian
framework and the particles are tracked in a Lagrangian
fashion by solving Newton’s equations of motion [40].
Particle collisions are modeled with a Hertzian contact
model [41], and the drag force is accounted for by Wen and
Yu’s empirical drag law [42]. Electrostatic interactions
between particles are modeled using a particle-particle
particle-mesh method that accounts for both short-range
and long-range effects [43]. Details of the numerical
scheme are given in the Supplemental Material [31]. At
the nonperiodic walls described earlier, we impose no
slip boundary conditions for the fluid, and the electrical
potential is fixed at zero. The simulations include both
frictional and inelastic particle-wall interactions. At the
start of each simulation, the particles are distributed
randomly in the simulation domain.
In the results presented here, we vary the e=g value

between 0 and 7 (27 different values), while αp is varied
between 0 and 3 (13 different values), producing a total of
339 simulations, each using 20 626 particles. The system

charge saturated typically within ∼2 s and every simulation
was run for an additional 8 s to obtain time-averaged
statistics.
Simulation results are summarized in Fig. 1, with

panels (a) and (b) showing the average particle contact
coordination number hZi and the scaled gas pressure drop,
respectively. Higher hZi values, indicative of a more
clustered state of the particles, appear when both e=g and
αp are large. We note that without polarizability (αp ¼ 0),
strong clustering does not occur for any level of particle
charging: a straightforward consequence of Coulomb repul-
sion. Likewisewithout particle charging (e=g ¼ 0), there are
no electrostatic forces irrespective of polarizability, so both
particle charging (e=g) and polarizability (αp) are needed to
generate clustering. As we will see, sheeting of particles
along a boundarywall occurs in the “sheeted” region of high
e=g and αp, delineated by black broken lines in Fig. 1(a).
As we have described, the simulations use a “laboratory

frame” in which particle flux is zero, and the weight of the
particles is supported by a combination of gas pressure drop
and wall friction. The scaled gas pressure drop, ΔPg=Lρ̄g,
for various combinations of e=g and αp values [corre-
sponding to Fig. 1(a)] are presented in the form of a contour
plot in Fig. 1(b), where ΔPg=Lρ̄g ¼ 1 implies that the
weight of the particles is completely supported by the gas.
As the electrostatic forces (Coulombic or dielectrophoretic)
increase, the particles become increasingly supported by
wall resistance. At low e=g values, the extent of particle
charging is small and so the strength of the prevailing
electric field is small as well; polarization has a negligible
effect under these conditions. As e=g increases polarization
plays an increasingly important role.

(a) (b)

FIG. 1. (a) Mean particle contact coordination number hZi
(number of particles contacting a given particle), as a function of
the dimensionless ratio of Coulombic and gravitational forces
(e=g) and polarizability (αp). The black dashed line shows
contour where average particle contact number hZi ¼ 0.8.
(b) Driving gas pressure difference normalized by the suspension
weight [ ρ̄g ¼ ðhϕsiρp þ h1 − ϕsiρgÞg]. White line, see caption
of Fig. 2. Contour plots have been smoothed and interpolated
from the actual simulation values, which can be found from the
Supplemental Material [31].
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The domain-averaged gas-particle slip velocity, ũslip ¼
ũg;z − ũp;z, presented in Fig. 2(a) manifests a more complex
dependence on e=g and polarizability than the contact
coordination number and pressure drop shown in Fig. 1.
The low contact number region in Fig. 1(a) contains two
subregions: one with higher slip velocity and meandering
flow pattern [see Fig. 3(a)] and one with lower slip velocity,
exhibiting nearly symmetric, nonmeandering flow. In the
higher contact number region of Fig. 1(a) (“sheeted”), the
average slip velocity is low.
As shown in Fig. 2(b), the distribution of particles in the

flow channel is inhomogeneous to some extent even in the
absence of electrostatic effects (i.e., near e=g ¼ αp ¼ 0).
From an examination of snapshots of simulations
[cf. Figs. 3(a) and 3(b)], it appears that this inhomogeneity
is associated with a slight enrichment of particles in the
vicinity of the walls and the flow-induced dynamic clusters
where the particles congregate near each other. Both
contribute to particle volume fraction variance, which is
nonzero even in the absence of electrostatic effects [see
Fig. 2(b)]. They weaken the gas-particle interaction (i.e.,
the effective drag coefficient) and increase the gas flow rate
required to produce the pressure drop needed to maintain
zero particle mass flux. Indeed, the average slip velocity
[Fig. 2(a)] is in excess of the terminal settling velocity of
the particle even though the gas is not required to support
the entire weight of the particle.

When electrostatic effects are included, a number of
changes occur. First, stronger particle-wall interactions
lower the pressure drop required to support the particles
[Fig. 1(b)]. Second, both the particle volume fraction

(a) (b)

FIG. 2. Flow behavior of nearly symmetric, meandering, and
sheeted regions as a function of the dimensionless ratio of
Coulombic and gravitational forces (e=g) and polarizability
(αp). (a) Color coding represents the domain-averaged slip velocity
(ũslip ¼ ũg;z − ũp;z) normalized by the particle terminal velocity
ut ¼ 0.432 m=s. Here, ũg;z denotes the Favre-averaged gas
velocity, and ũp;z denotes the average velocity of all the particles
in the domain. (b) Domain-averaged variance of the Eulerian
particle volume fraction field (for Eulerian grid size 3dp). The
black dashed line shows contour where the average particle contact
number hZi ¼ 0.8 [refer to 1(a)], and the white dashed line
identifies both the fastest slip between particles and fluid and
the highest variability in particle concentrations. Contour plots
have been smoothed and interpolated from the actual simulation
values, which can be found from the Supplemental Material [31].

(c) (d)

(b)(a)

FIG. 3. (a) Snapshot taken after 7.5 s of simulation time from
e=g ¼ 7 and αp ¼ 0 (no polarization). Background color shows
vertical fluid velocity, and particles show the local volume
fraction. Yellow (green) particles have local volume fraction
above (below) the average volume fraction (hϕpi ¼ 0.1) and on
an average tend to move downward (upward). Only every 20th
particle is shown and they are magnified to 2.5 times their actual
size for ease of visualization. White arrows identify the particle
flow directions. Some particles appear outside the channel due to
image perspective. (b) The same plot as in panel (a), but for
αp ¼ 3 (largest amount of polarization). (c) Time-averaged
vertical particle velocity profile for nonsheeted flow configura-
tions. (d) Vertical particle velocity profile for the sheeted flow
configuration. Solid red and purple lines show the profile for
panel (a) and (b) flows, respectively. Velocity profiles are
normalized by particle terminal velocity: ut ¼ 0.432 m=s. The
flow patterns illustrated in the snapshots shown in panels (a) and
(b) persist in time (see Supplemental Material [31]).
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variance [Fig. 2(b)] and the required slip velocity to
maintain zero particle mass flux [Fig. 2(a)] vary with
e=g and αp in a complex, but largely similar fashion
[Figs. 2(a) and 2(b)]. The Pearson correlation coefficient
between the slip velocity and the product of particle volume
fraction variance and the pressure drop is 0.86, indicating a
strong correlation. This similarity can be understood by
noting that the average slip velocity is a measure of the ratio
between the pressure gradient and the average drag
coefficient. Since the average drag coefficient decreases
with an increasing particle volume fraction variance, it
stands to reason that slip velocity and volume fraction
variance should be correlated.
To understand how both slip velocity and volume

fraction variance depend on electrostatics, we note that
introducing Coulombic interactions (in the absence of
polarization) can be expected to cause particle-particle
repulsion and wall-particle attraction. Stronger wall-
particle attraction in turn draws particles closer to the walls
and so lowers the required pressure drop, as illustrated by
Fig. 1(b). This same migration of particles toward the walls
increases particle volume fraction variance. Working
against this effect, Coulombic repulsion between the
particles reduces clustering which lowers the variance.
The consequence of these competing effects is seen in
Fig. 2(b). Increasing e=g first decreases the variance
corresponding to increased Coulombic repulsion between
particles; a further increase in e=g leads to a large increase
in the variance due to enhanced lateral segregation.
Our simulations at low e=g values (and no polarization)

did not reveal meandering flow, but a meandering flow
pattern as illustrated in Fig. 3(a) is observed above a
threshold value of e=g. A meandering flow pattern is
accompanied by a large increase in the variance of particle
volume fraction, setting up a path of low resistance for the
gas to flow through; as a result, the average slip velocity
increases when meandering sets in. These are seen clearly
in Figs. 2(a) and 2(b). The time-average particle flux in
such a state is still nearly symmetric [see solid line in
Fig. 3(c)].
Stipulation of periodic boundary conditions in the axial

direction influences the threshold e=g value at which
meandering sets in. Simulations performed in taller peri-
odic domains produce an onset of meandering flow at lower
e=g values (not shown). In fact, a simulation in a periodic
domain that is twice as tall yielded a meandering flow even
in the absence of electrostatic effects. Thus, including
Coulombic interactions lowers the critical axial wave-
lengths above which meandering flow is obtained, and
intensifies the prevalence of meandering flow structures.
Simulations performed in wider channels, not shown,
manifest analogous trends.
Including polarization changes the flow behavior appre-

ciably. First, the dipoles induced by the electric field give
rise to an attractive interaction between particles. It is

known that even when particles carry the same charge,
strong dipole interaction can lead to a net attractive force
between particles [26,27]. As a result, the average contact
coordination number tends to increase with an increasing
polarizability [see Fig. 1(a)]. Our simulations show that a
meandering flow sets in at lower e=g values when polar-
izability is included. Thus, meandering flows can be
expected to be more prevalent in the case of dielectric
particles.
Increasing particle charging (e=g) increases the magni-

tude of the electric field, which leads to stronger electric
dipoles when the particles polarize. This leads to higher
interparticle attraction and a higher particle contact co-
ordination number as seen in Fig. 1(a). In industrial-
fluidized beds, elutriation of particles from the bed is of
serious concern. As particle agglomerates are less easily
elutriated than individual particles, attractive forces
between polarizable, charged particles can be expected
to lower elutriation, as has been found in a recent
experimental study [12].
Interestingly, an asymmetric flow pattern, which takes

the form of a sheetlike structure shown in Fig. 3(b),
emerges in the case of highly polarized particles at large
e=g values. As dipole-induced attraction takes place in the
direction of the electric field (which is principally in the
wall-normal direction), the sheetlike structure also forms
parallel to a wall, as opposed to particle clusters typically
observed in nondirectional forms of cohesion such as liquid
bridges [44,45] or van der Waals forces [46]. The sharp
change in the particle volume fraction variance between the
meandering and sheeted regions is associated with this
change in the particle flow behavior. Such sheeting of
particles has been reported in industrial-fluidized bed
polymerization reactors [20–22], and is undesirable from
a reactor performance point of view.
In summary, electrostatic interactions due to particle

charging and polarization significantly affect confined
particle-laden flows. Both particle charging and polariza-
tion make meandering flows more prevalent. An asym-
metric flow pattern, referred to as sheeted flow, is realized
only when particle polarization is taken into consideration.
Earlier studies [11,12] have used the ratio of total electro-
static forces to gravitational force to describe the system
behavior where the electrostatic forces are evaluated by an
expression derived by Feng [27] that combines polarization
and Coulomb forces. In this study, we find that particle
polarization can give rise to a qualitatively different flow
behavior than a strongly charged system. Therefore, the
dielectric polarization of particles should be considered
independently from the Coulombic interactions, rather than
attempting to lump all electrostatic influences together.
The potentially strong influence of polarization even in

the absence of an externally imposed electric field reported
in this study suggests that one could manipulate flows
of dense assemblies of polarizable particles by an applied
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field—introducing, strengthening, or weakening yield
stress in the assembly and thus enabling flow control, an
idea widely exploited in the context of electrorheological
fluids [47].
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[28] J. Laurentie, P. Traoré, and L. Dascalescu, J. Electrost. 71,

951 (2013).
[29] S. Naik, S. Saurabh, G. Vipul, H. Bruno, Y. Abramov,

W. Yu, and B. Chaudhuri, Int. J. Pharm. 491, 58 (2015).
[30] J. Kolehmainen, P. Sippola, O. Raitanen, A. Ozel, C. M.

Boyce, P. Saarenrinne, and S. Sundaresan, Chem. Eng. Sci.
173, 363 (2017).

[31] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.124503 for simula-
tion details, which includes Refs. [32–39].

[32] T. B. Anderson and R. Jackson, Ind. Eng. Chem. Fundam. 6,
527 (1967).

[33] P. Pepiot and O. Desjardins, Powder Technol. 220, 104
(2012).

[34] A. Ozel, J. Kolehmainen, S. Radl, and S. Sundaresan,
Chem. Eng. Sci. 155, 258 (2016).

[35] Z. Zhou, S. Kuang, and A. Yu, J. Fluid Mech. 661, 482
(2010).

[36] C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker,
Prog. Comput. Fluid Dyn. 12, 140 (2012).

[37] C. Goniva, C. Kloss, N. Deen, J. Kuipers, and S. Pirker,
Particuology 10, 582 (2012).

[38] K. Johnson, Contact Mechanics (Cambridge University
Press, Cambridge, 1987).

[39] A. Renzo and F. P. Di Maio, Chem. Eng. Sci. 59, 525
(2004).

[40] J. Capecelatro and O. Desjardins, J. Comput. Phys. 238, 1
(2013).

[41] P. Cundall and O. Strack, Geotechnique 29, 47 (1979).
[42] C. Wen and Y. H. Yu, Chem Eng Prog, Symp Ser 62, 100

(1966).
[43] J. Kolehmainen, A. Ozel, C. M. Boyce, and S. Sundaresan,

AIChE J. 62, 2282 (2016).
[44] V. Richefeu, M. S. El Youssoufi, and F. Radjai, Phys. Rev. E

73, 051304 (2006).
[45] C. M. Boyce, A. Ozel, J. Kolehmainen, S. Sundaresan, C. A.

McKnight, and M. Wormsbecker, AIChE J. 63, 2520
(2017).

[46] Y. Gu, S. Chialvo, and S. Sundaresan, Phys. Rev. E 90,
032206 (2014).

[47] T. C. Halsey, Science 258, 761 (1992).

PHYSICAL REVIEW LETTERS 121, 124503 (2018)

124503-5

https://doi.org/10.1029/98JD00278
https://doi.org/10.1029/98JD00278
https://doi.org/10.1103/PhysRevLett.100.014501
https://doi.org/10.1103/PhysRevLett.100.014501
https://doi.org/10.1016/j.elstat.2007.08.007
https://doi.org/10.1029/2009GL038589
https://doi.org/10.1029/2009GL038589
https://doi.org/10.1016/j.powtec.2013.05.007
https://doi.org/10.1016/j.powtec.2014.03.020
https://doi.org/10.1016/j.powtec.2016.04.013
https://doi.org/10.1016/j.powtec.2016.08.030
https://doi.org/10.1016/j.powtec.2016.08.030
https://doi.org/10.1016/j.powtec.2016.12.032
https://doi.org/10.1002/aic.15541
https://doi.org/10.1016/j.powtec.2016.10.063
https://doi.org/10.1016/j.powtec.2016.10.063
https://doi.org/10.1002/aic.15514
https://doi.org/10.1002/aic.15514
https://doi.org/10.1029/2003GL017879
https://doi.org/10.1038/nphys1631
https://doi.org/10.1038/nphys1631
https://doi.org/10.1071/SR9960309
https://doi.org/10.1071/SR9960309
https://doi.org/10.1016/j.physrep.2003.12.003
https://doi.org/10.1016/j.physrep.2003.12.003
https://doi.org/10.1063/1.2744353
https://doi.org/10.1088/0963-0252/12/2/312
https://doi.org/10.1088/0963-0252/12/2/312
https://doi.org/10.1016/j.ces.2005.07.029
https://doi.org/10.1016/j.powtec.2017.01.031
https://doi.org/10.1016/j.powtec.2017.01.031
https://doi.org/10.1038/542159a
https://doi.org/10.1007/s10035-015-0550-8
https://doi.org/10.1007/s10035-015-0550-8
https://doi.org/10.1016/j.powtec.2010.01.006
https://doi.org/10.1038/nphys3396
https://doi.org/10.1038/nphys3396
https://doi.org/10.1103/PhysRevE.62.2891
https://doi.org/10.1016/j.elstat.2013.08.001
https://doi.org/10.1016/j.elstat.2013.08.001
https://doi.org/10.1016/j.ijpharm.2015.05.081
https://doi.org/10.1016/j.ces.2017.08.006
https://doi.org/10.1016/j.ces.2017.08.006
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.124503
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.124503
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.124503
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.124503
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.124503
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.124503
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.124503
https://doi.org/10.1021/i160024a007
https://doi.org/10.1021/i160024a007
https://doi.org/10.1016/j.powtec.2011.09.021
https://doi.org/10.1016/j.powtec.2011.09.021
https://doi.org/10.1016/j.ces.2016.08.014
https://doi.org/10.1017/S002211201000306X
https://doi.org/10.1017/S002211201000306X
https://doi.org/10.1504/PCFD.2012.047457
https://doi.org/10.1016/j.partic.2012.05.002
https://doi.org/10.1016/j.ces.2003.09.037
https://doi.org/10.1016/j.ces.2003.09.037
https://doi.org/10.1016/j.jcp.2012.12.015
https://doi.org/10.1016/j.jcp.2012.12.015
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1002/aic.15279
https://doi.org/10.1103/PhysRevE.73.051304
https://doi.org/10.1103/PhysRevE.73.051304
https://doi.org/10.1002/aic.15761
https://doi.org/10.1002/aic.15761
https://doi.org/10.1103/PhysRevE.90.032206
https://doi.org/10.1103/PhysRevE.90.032206
https://doi.org/10.1126/science.258.5083.761

