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We show that a nonlinear optical response associated with a resonant, atomically thin material can be
dramatically enhanced by placing it in front of a partially reflecting mirror, rendering otherwise weakly
nonlinear systems suitable for experiments and applications involving quantum nonlinear optics. Our
approach exploits the nonlinear response of long-lived polariton resonances that arise at particular distances
between the material and the mirror. The scheme is entirely based on free-space optics, eliminating the need
for cavities or complex nanophotonic structures. We analyze a specific implementation based on exciton-
polariton resonances in two-dimensional semiconductors and discuss the role of imperfections and loss.
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The realization of strong nonlinear interactions between
individual light quanta (photons) has been a long-standing
goal in optical science and engineering that is both of
fundamental and technological significance [1]. While in
conventional optical materials the nonlinearity at light
powers corresponding to single photons is negligibly weak,
remarkable advances have been recently made towards
realizing this goal. One promising approach to quantum
nonlinear optics is based on quantum emitters confined to
cavities or nanophotonic structures that greatly enhance
light-matter interactions. Proof-of-principle experiments
have been carried out with neutral atoms [2–4], quantum
dots [5], quantum wells [6,7], and color centers in diamond
[8,9]. At the same time, experiments with cold gases [10],
ensembles of solid state quantum emitters [11], and excitons
in transition metal dichalcogenides (TMDs) [12,13] have
demonstrated strong light-matter coupling without the need
for nanophotonic structures. This is achieved via spatially
delocalized optical excitation, which, however, reduces the
nonlinearity, thereby rendering the system effectively linear
at the level of individual photons. A number of solutions to
this challenge have been proposed, for example, exploiting
Rydberg blockade to induce strong, nonlocal interactions
between ultracold atoms that result in strong photon-photon
interactions [14]. This approach has been applied to realize
photon blockade [15–17], two- and three-photon bound
states [18], and symmetry protected collisions between
strongly interacting photons [19]. Extending such techniques
to the domain of integrated solid-state systems is an out-
standing challenge.
This Letter describes a novel approach to quantum non-

linear optics, which makes use of resonant, atomically thin
materials. One example of such a material is a two-dimen-
sional semiconductor such as a TMD monolayer, which
supports tightly bound, optically active excitons [20]. In free
space, excitons with zero in-plane momentum decay with a

radiative rate γ, emitting a plane wave to either side of the
TMD. Interactions between excitons render the system
nonlinear, giving rise to a shift of the two-exciton state
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FIG. 1. (a) An atomically thin (2D) emitter is positioned at a
distance d in front of a partially reflecting mirror with reflection
and transmission coefficients r0 and t0, respectively. The free-
space radiative decay rate is given by γ, while γ0 denotes the loss
rate. The setup is formally equivalent to (b), where the two-
dimensional emitter is replaced by an atom and a one-dimen-
sional waveguide takes the role of the free-space plane-wave
mode. (c) Transmission spectrum in the limit γ ≪ νFSR for γ0 ¼ 0
and T0 ¼ 0.1 at various distances d. (d) Maximum transmission
as a function of d. The dashed lines indicate the distances for
which the full spectra are shown in (c). The maximum trans-
mission is periodic in d with period λ0=2. (e) Transmission at the
Fabry-Pérot resonance (d ¼ dFP, δ ¼ δFP) as a function of the
loss rate. Transmission is high provided γ0 ≪ γFP ¼ T0γ.
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relative to the noninteracting case. However, in practice this
nonlinearity is very weak, requiring a large number of
excitons to create a resolvable shift. To enhance the nonlinear
optical response, in our approach, the TMD is placed in front
of a partially reflecting broadband mirror as shown in
Fig. 1(a). When the separation between the TMD and the
mirror is close to a half-integer multiple of the exciton
resonancewavelength, the light emitted by the TMD towards
the left [Fig. 1(a)] and the light reflected by the mirror
destructively interfere,which leads to significant suppression
of the radiative linewidth, enhancement of the exciton
lifetime, and an associated enhancement of the optical
nonlinearity. This effect can be understood in terms of the
formation of long-lived exciton polaritons, with a substantial
excitonic component, which become very sensitive to
nonlinear frequency shifts arising from exciton-exciton
interactions.
Before proceeding, we note an important connection with

the single-atom system shown in Fig. 1(b). Both systems can
be thought of as a single-channel scattering problem with
emission rate γ into the channel of interest and loss rate γ0. In
the case of a single atom, γ0 is typically dominated by
emission into free-spacemodes. By contrast, conservation of
in-plane momentum prevents scattering into undesired
channels for a TMD, and loss only emerges due to non-
radiative decay and material imperfections such as disorder.
The relevant condition of low loss, γ0 ≪ γ, has already been
demonstrated in high quality samples [12,13]. Similar
considerations apply to other two-dimensional systems such
as ordered arrays of trapped atoms with subwavelength
spacing [21,22].
The key idea of this work can be understood by

considering the linear response of a TMD in free space.
The amplitude reflection coefficient close to an excitonic
resonance is given by the complex Lorentzian rTMDðδÞ ¼
−iðγ=2Þ=½δþ iðγ þ γ0Þ=2�, where δ denotes the detuning
from resonance [23]. Strikingly, the TMD acts as a perfect
reflector at zero detuning in the absence of losses despite
being much less than a wavelength thick. The vanishing
transmission is the result of resonant scattering into a single
channel, where the incident field destructively interferes
with the scattered field. The effect has been discussed in a
variety of other contexts including a single atom coupled to
a one-dimensional waveguide [24], classical plasmonic
resonators [25], and ordered arrays of atoms [21,22].
A nearby mirror significantly modifies the optical

response. The intensity transmission coefficient T can be
computed by summing over all multiple reflections between
theTMDand themirror [26].As shown inFigs. 1(c) and 1(d),
the transmission spectrum strongly depends on the distance
d. In particular, perfect transmission is only attainable at
distances close to half-integer multiples of the exciton
transition wavelength λ0. This distinction from a conven-
tional Fabry-Pérot resonator originates from the frequency
dependence of the TMD. Perfect transmission through a

Fabry-Pérot resonator occurs when two conditions are met:
The round-trip phase is an integer multiple of 2π and the
reflection coefficients of the two mirrors are equal. Applied
to our system, the latter condition may be stated as
jrTMDðδÞj2 ¼ jr0j2, which sets the detuning at which the
Fabry-Pérot resonance occurs, δFP ¼ �ðγ=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

T0=R0

p
. The

former condition then determines the allowed distances dFP
according to the relation r0e2ikFPdFP ¼ −R0 � i

ffiffiffiffiffiffiffiffiffiffiffi
R0T0

p
,

where kFP is the wave number corresponding to the reso-
nance frequency. Here, r0 (assumed to be real and negative)
and t0 denote the amplitude reflection and transmission
coefficient of the mirror, while R0 ¼ jr0j2 and T0 ¼ jt0j2
refer to the respective intensity coefficients.Wemay estimate
the width γFP of the high-transmission resonance by con-
sidering the phase accumulated by a photonduringN ≈ 1=T0

round trips before it is transmitted through the mirror. If the
photon is detuned byΔ from the resonance, it accumulates an
additional propagation phase φpropðΔÞ ¼ 2NdΔ=c, where c
is the speed of light. Furthermore, the reflection phase
imparted by the TMD is modified by φTMDðΔÞ ≈ 2NΔ=γ.
The width of the resonance follows from φpropðγFPÞþ
φTMDðγFPÞ ≈ 1. In the limit φprop ≫ φTMD, the phase from
the TMD can be neglected and the system resembles a
conventional Fabry-Pérot resonator. We are interested in the
opposite limit, φprop ≪ φTMD, requiring that γ be much
smaller than the free spectral range νFSR ¼ c=ð2dÞ, which
yields γFP ≈ T0γ. For a highly reflecting mirror, γFP is much
smaller than the free-space linewidth γ. The narrow linewidth
can be physically understood in terms of a long-lived
polariton formed by an exciton and a photon localized
between the TMD and the mirror. Spontaneous emission
from the polariton is suppressed because the photonic
component destructively interferes with the field emitted
by the exciton [27].
Since the polaritons are predominantly composed of

excitonic degrees of freedom, the interaction between them
is comparable to the interaction between excitons in the
absence of a mirror. Yet, polaritons may interact over a
much longer duration owing to their extended lifetime. If
we denote the interaction energy between two excitons by
χ, we expect that a strong quantum nonlinearity can be
observed if χ > T0γ, corresponding to an effective
enhancement of the nonlinearity by a factor 1=T0 compared
to free space. The quantum nonlinearity results in photon
antibunching as the presence of a single polariton blocks
transmission by shifting the Fabry-Pérot resonance by more
than its width. In what follows, we confirm this simplified
analysis and show that the effect is robust to loss, provided
the loss rate γ0 is smaller than γFP, as required to maintain
near unity transmission [see Fig. 1(e)].
While the above classical approach accounts for the

linear response of the system, it is necessary to quantize
both excitonic and electromagnetic degrees of freedom to
capture quantum nonlinear effects. The spatial mode of
the excitons that couples to the light field is described by
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the bosonic annihilation and creation operators a and a†.
The internal dynamics of the excitons are governed by the
Hamiltonian H0 ¼ ω0a†aþ ðχ1=2Þa†a†aa, where ω0 is
the resonant frequency of the excitons and χ1 is the
dispersive nonlinearity due to exciton-exciton interactions.
A level diagram of the three lowest energy states is shown
in Fig. 2(a). The equation of motion for a system operatorQ
can be expressed in terms of the Heisenberg-Langevin
equation [26,28]

_Q ¼ −i
�
Q;H0 þ

γ

2
Imðr0e2ik0dÞa†aþΩa† þΩ�a

�

þD½Q� þ F ½Q�; ð1Þ

where k0 ¼ ω0=c and

Ω ¼
ffiffiffi
γ

2

r
ð1þ r0e2ik0dÞhbin;Ri þ

ffiffiffi
γ

2

r
t0eik0dhbin;Li ð2Þ

is the Rabi frequency. It is composed of a superposition of
the input fields bin;R and bin;L, illustrated in Fig. 1(a), which
evolve as freely propagating photonic modes (as if the
TMD and mirror were absent). The dissipative dynamics
are described by

D½Q� ¼ ½γ þ γReðr0e2ik0dÞ þ γ0�
�
a†Qa −

1

2
fQ; a†ag

�

þ χ2
2

�
a†a†Qaa −

1

2
fQ; a†a†aag

�
: ð3Þ

In addition to the radiative decay rate γ and the loss rate γ0, we
include a nonlinear decay rate χ2. This rate accounts for the
dissipative nonlinearity that may arise from nonradiative
decay involvinga pair of excitons, or fromexcitons scattering
off eachother into a spatialmodeoutside themodeof interest.
Excitons may further be subject to pure dephasing, though
the effect has been excluded here for clarity. We show in the
Supplemental Material that a pure dephasing rate γd affects
the system in a qualitatively and quantitatively similar
fashion to the loss rate γ0 [26]. Finally, the term F ½Q� in
Eq. (1) is a Langevin noise operator [26].
Equation (1) is valid under three assumptions. (i) The

Markov approximation applies, γ ≪ ω0, which is typically
justified for optical transitions and indeed holds for excitons
in TMDs. (ii) The photons initially occupy a coherent state
that is uncorrelated with the excitons. (iii) Retardation
can be neglected during a round trip of a photon traveling
between the TMD and the mirror. We show in the
Supplemental Material that this gives rise to the conditions
γ ≪ νFSR, γ ≪ νFSR½1þ Reðr0e2ik0dÞ�=Imðr0e2ik0dÞ, and
χ1;2 ≪ νFSR½1þ Reðr0e2ik0dÞ�, the first one being equivalent
to the earlier condition that the Fabry-Pérot resonance be
dominated by the linewidth of the TMD. All three inequal-
ities are easilymet for d on the order of an optical wavelength
[26]. When these conditions are satisfied, the mirror affects
the exciton dynamics in a rather simple way. It shifts the
resonance frequency by ðγ=2ÞImðr0e2ik0dÞ and modifies the
radiative decay rate to γ̃ ¼ γ½1þ Reðr0e2ik0dÞ�.
We can obtain the scattered field from the input-output

relations [26,28]

bout;L ¼ t0eik0dbin;L þ r0e2ik0dbin;R þ
ffiffiffi
γ

2

r
ð1þ r0e2ik0dÞa;

bout;R ¼ t0eik0dbin;R −
t0
t�0
r�0bin;L þ

ffiffiffi
γ

2

r
t0eik0da: ð4Þ

These expressions have the simple interpretation that
the output field arises from a superposition of the input
fields with the field emitted by the TMD. Supposing that
light is incident from the left, the reflection and trans-
mission coefficients can be computed according to R¼
hb†out;Lbout;Li=hb†in;Rbin;Ri and T¼hb†out;Rbout;Ri=hb†in;Rbin;Ri.
For a weak input field, the coefficients computed in this
manner agree with the classical result under the same
conditions for which the Heisenberg-Langevin equation
holds. We investigate the quantum nonlinear response by
considering the two-time correlation function of the trans-
mitted field,

(a) (b)

(c) (d)

FIG. 2. (a) Three lowest energy levels of the anharmonic
oscillator used to model quantum nonlinear effects. Dispersive
and dissipative nonlinearities are denoted by χ1 and χ2, respec-

tively. (b) Second-order correlation function gð2ÞT ðτÞ of the trans-
mitted light at the Fabry-Pérot resonance (d ¼ dFP, δ ¼ δFP) for
different values of χ1 while χ2 ¼ γ0 ¼ 0. Pronounced photon
antibunching is observed when χ1 > γFP. (c) Dependence of

gð2ÞT ð0Þ on the strength of the nonlinearity. Only χ1 (blue) or χ2
(red) is varied, while the other parameter is set to zero. (d) gð2ÞT ð0Þ
as a function of γ0 and T0. The experimentally relevant regime to
observe strong antibunching is located below the horizontal
dashed line (χ1 > γFP) and above the red line (γFP > γ0).
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gð2ÞT ðτÞ ¼ hb†out;Rð0Þb†out;RðτÞbout;RðτÞbout;Rð0Þi
hb†out;Rð0Þbout;Rð0Þihb†out;RðτÞbout;RðτÞi

: ð5Þ

Such correlation functions can be computed by expressing
them in terms of the two-time correlation functions of the
excitonic operators, which can be related to one-time expect-
ation values using the quantum regression theorem [26,29].
For the remainder of the discussion, we focus on the sharp

Fabry-Pérot resonance, d ¼ dFP. It is possible to neglect the
difference between kFP and k0 under the same conditions that
allowed us to ignore retardation. Hence, the resonance
condition reads r0e2ik0dFP ¼ −R0 � i

ffiffiffiffiffiffiffiffiffiffiffi
R0T0

p
and the radia-

tive decay rate of the exciton-polariton is given by
γ̃ ¼ T0γ ¼ γFP, consistent with the width of the transmission
peak. To quantify the effect of line narrowing on the nonlinear

dynamics,we plot gð2ÞT ðτÞ for different values of the dispersive
nonlinearity χ1 in Fig. 2(b), assuming that a weak, mono-
chromatic, coherent state resonant with the transmission peak
(δ ¼ δFP) is incident on the TMD. The figure clearly shows

that gð2ÞT ð0Þ drops below unity for χ1 > γFP, indicating a
nonclassical state of light with strong photon antibunching
[29]. The effect may be understood by observing that the
transmission peak of the single and two-exciton transitions
are shifted relative to each other by χ1. If this shift exceeds the
peak width γFP, the second photon is reflected with high
probability. The mechanism is closely related to the polariton
blockade in quantum-well cavities, where the presence of a
single polariton blocks subsequent photons from entering the
cavity [30]. In the limit χ1 → ∞, the transmission probability
of the second photon is given by T0, which explains the small

but nonvanishing value of gð2ÞT ð0Þ. By setting χ1 ¼ δFP, it is

possible to achieve gð2ÞT ð0Þ ¼ 0because the transmissionpeak
of the single exciton transition thenperfectlymatches a zero in
transmission of the two-exciton transition [cf. Fig. 1(c) at zero
detuning].
A dissipative nonlinearity can also give rise to photon

antibunching. Figure 2(c) shows gð2ÞT ð0Þ as a function of
either χ1 or χ2, where the other parameter is set to zero. The
two nonlinearities have a qualitatively similar effect on
photon antibunching with the main difference being that
the perfect antibunching dip at χ1 ¼ δFP is absent for the
dissipative nonlinearity. While in both cases antibunching is
caused by reduced transmission at the two-exciton transition,
the dissipative nonlinearity accomplishes this by reducing
the peak height rather than by shifting its position.
In order to observe antibunching in the presence of loss, it

is necessary that the nonlinearity is large compared to not
only γFP but also γ0. This is illustrated in Fig. 2(d), where we
plot gð2ÞT ð0Þ as a functionof both γ0 andT0 for a fixedvaluesof
χ1 and χ2. In addition, we still require that γ0 < γFP to ensure
high transmission. These conditions may be summarized as

χ > T0γ > γ0; ð6Þ

where χ stands for χ1 or χ2. In Fig. 2(d), these inequalities
correspond to the region below the dashed horizontal line, to
the left of the dashed vertical line, and above the diagonal red
line. We point out that strong antibunching can be observed
in the region γFP < γ0 <

ffiffiffiffiffi
T0

p
γ below the red line. However,

this region is of little practical relevance as it would be
challenging to observe antibunching given the weak trans-
mitted signal.
We next discuss the feasibility of our scheme with

TMDs. Theoretical calculations [31] have estimated the
interaction energy between two excitons delocalized over
an area A in WS2 (we expect it to be comparable in other
TMDs) as g ≈ 4 μeV μm2=A [32]. The parameter χ1 is
obtained by computing the interaction energy of two
excitons whose in-plane wave function is proportional to
the electric field profile of the incident laser. For a Gaussian
beam with waist w0, we obtain χ1 ¼ g=ðπw2

0Þ, where we
assumed that the interaction is short ranged. The exciton
transition in WS2 occurs at λ0 ≈ 600 nm [33], which yields
χ1 ≈ 13 μeV for a diffraction limited spot (w0 ¼ λ0=2).
With the intrinsic linewidth given by γ ≈ 3 meV [34], the
transmission coefficient of the mirror must therefore satisfy
T0 ≲ 1=230, which is experimentally feasible. In order to
prevent the photonic mode from diverging over the course
of ∼230 round trips, the mirror must be curved with a
radius of curvature that matches the incident beam. In
practice, the enhancement will be limited by the loss rate γ0,
which depends on the quality of the material. Values of
γ0 < 0.1γ have recently been achieved [13]. While the
current limiting factors are not fully understood, improved
exciton properties have been observed in suspended devi-
ces [35], and further advances in material quality will likely
result in an additional decrease of γ0. We note that exciton
dispersion places a lower bound on the loss rate. The bound
is determined by the time scale td ¼ mw2

0=ð2ℏÞ, m being
the exciton mass, after which the exciton wave function
starts to significantly spread out, leading to a reduced
overlap with the photonic mode, and thereby spoiling the
Fabry-Pérot resonance. For our purpose, the effect is
expected to negligible since the associated rate ℏ=td
contributing to γ0 is found to be less than 1 μeV.
The above considerations indicate that TMDs are a

promising platform for exploring quantum nonlinear opti-
cal phenomena. In addition, our approach is compatible
with methods that seek to increase the interaction strength
between excitons in order to alleviate the requirements on
the loss rate. It has been proposed that this may be
accomplished using excited states of the exciton [31] or
by exploiting scattering resonances between excitons [36].
Interlayer excitons in TMD heterostructures offer an alter-
native route as their permanent dipole moment gives rise to
much stronger interactions [37]. Finally, applying a peri-
odic potential to the TMD can enhance the interaction
strength by increasing the local exciton density at the
potential minima. The potential may be implemented with a
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modulation of the dielectric environment [38] or via the
energy landscape arising from a moiré pattern in a hetero-
structure [39].
In summary, we have demonstrated that a partially

reflecting mirror can be used to dramatically enhance the
lifetime of polaritons associated with a resonant two-dimen-
sional material, which in turn enhances the sensitivity to
weak nonlinearities. In contrast to other approaches of
generating nonclassical states of light with weak nonlinear-
ities, such as the unconventional photon blockade [40–43],
our scheme does not require fine tuning between the non-
linearity and the loss rate. While we focused on TMDs, the
approach is applicable to other emitters coupled to a single
scattering channel such as two-dimensional arrays of trapped
ultracold atoms [21,22]. In addition, the approach may be
useful as a spectroscopic tool by narrowing emission lines,
which does not require reaching the quantum nonlinear
regime. The scheme can be naturally extended to multiple
emitters such as several closely spaced layers of TMDs,
which could replace the conventional mirror entirely [44].
Future work could explore the crossover into the non-
Markovian regime by moving the emitter sufficiently far
away from the mirror such that retardation is no longer
negligible [45,46].
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