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According to the laws of thermodynamics, no heat engine can beat the efficiency of a Carnot cycle. This
efficiency traditionally comes with vanishing power output and practical designs, optimized for power,
generally achieve far less. Recently, various strategies to obtain Carnot’s efficiency at large power were
proposed. However, a thermodynamic uncertainty relation implies that steady-state heat engines can
operate in this regime only at the cost of large fluctuations that render them immensely unreliable. Here, we
demonstrate that this unfortunate trade-off can be overcome by designs operating cyclically under
quasistatic conditions. The experimentally relevant yet exactly solvable model of an overdamped Brownian
heat engine is used to illustrate the formal result. Our study highlights that work in cyclic heat engines and
that in quasistatic ones are different stochastic processes.
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Introduction.—Conversion of disordered energy (heat)
into directed motion (work) propels not only industry but
also nature itself through photosynthesis. According to
the laws of thermodynamics, the efficiency η ¼ W=Qh
of this conversion is bounded from above by Carnot’s
efficiency ηC ¼ 1 − Tc=Th [1]. The average heat Qh from
a heat source can at most yield the average work
W ¼ hwi ¼ ηCQh, the remaining energy must be trans-
ferred into a heat sink. The upper bound is saturated if the
temperatures of the hot and cold heat reservoirs assume
constant values Th and Tc, respectively, and if the heat
engine (HE) operates reversibly. Also, it is frequently
argued that ηC can be reached only if the engine operates
on an infinite timescale tp with vanishing output power
P ¼ W=tp. Recently, this claim has been seriously chal-
lenged [2–15].
It was shown that either using a special coupling between

subsystems [3], working substances close to criticality
[4,6], or scalings leading to vanishing system relaxation
times [7–9], it is possible to asymptotically reach ηC with
P > 0. Although the HEs used for derivation of the last-
mentioned results obey the trade-off bounds P ≤ CðηC − ηÞ
[10,11,13], they can operate with η ¼ ηC and P > 0 since
the parameter C generally diverges with a vanishing system
relaxation time [16].
However, it was suggested that the price one has to pay

for overcoming the trade-off between power and efficiency
are large power fluctuations [6,9]. In the critical heat engine
[4], the fluctuations almost surely dominate the averages
[6] and also steady state HEs (SSHEs) exhibit large power
fluctuations [9].
Here, we show that such a trade-off does not exist for

quasistatic cyclic HEs (CHEs) with controllable relaxation

times. These machines can work with η asymptotically close
to ηC at P > 0 with vanishing fluctuations. Specifically,
we show that both the work and power fluctuation eσP ¼
σW=W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw2i −W2

p
=W and the Fano factor for work

σ2W=W are finite and can even vanish.
Our results highlight that the work done by CHEs and the

work done by SSHEs are two different stochastic proc-
esses. Although their mean values can be equal [17–19],
their fluctuations are qualitatively different. The work in the
SSHEs obeys thermodynamic uncertainty relations [20–24]
which imply that the Fano factor for the output work
diverges if the efficiency reaches ηC [9]. The work in the
CHEs obeys no such relation and it is possible to construct
a CHE operating with Carnot’s efficiency and delivering a
persistent deterministic power output.
Cyclic heat engines.—Consider a periodically driven HE

operating along a quasistatic Carnot cycle composed of two
isotherms connected by two adiabats. For concreteness, we
consider a one-dimensional system with the Hamiltonian

Hðx; tÞ ¼ kðtÞx2n=2n; n ¼ 1; 2;…; ð1Þ

where k ¼ kðtÞ controls its stiffness and x ¼ xðtÞ is a
continuous stochastic process describing the microstate of
the system. The Hamiltonian (1) serves as a mere illus-
tration. Our main results are valid for arbitrary thermody-
namic systems which can operate quasistatically, including
many-dimensional systems with momentum degrees of
freedom and systems with discrete state space.
The operational cycle of the engine is depicted in

Fig. 1. During the hot isotherm at Th (branch 1) and
during the subsequent adiabat (branch 2), the Hamiltonian
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opens (_k ≥ 0) and the system performs work wh ¼
−
R
1;2 dt∂tHðx; tÞ ¼ −

R
1;2 dt_kðtÞxðtÞ2n=2n on the environ-

ment (the integration runs over the branches 1 and 2).
During the rest of the cycle, the Hamiltonian closes (_k ≤ 0)
and the engine consumes work −wc ¼

R
3;4 dt∂tHðx; tÞ ¼

−
R
3;4 dt_kðtÞxðtÞ2n=2n. The heat on average enters the

system during the hot isotherm and leaves it during the
cold one (branch 3). We denote the duration of the ith
branch as ti and as tp ¼ t1 þ t2 þ t3 þ t4 the duration of the
whole cycle.
The average thermodynamics of the engine observed

after averaging work and heat over many cycles is that of a
standard reversible Carnot cycle. Namely, a combination of
the first and the second law of thermodynamics implies that
the average output work W is given by [1,25]

W ¼ hwi ¼ hwh þ wci ¼ Qh −Qc ¼ ðTh − TcÞΔS; ð2Þ

where ΔS is the change of the system entropy during the
hot isotherm. On the other hand, the work fluctuations
depend both on the details of the Hamiltonian and on the
way how the adiabatic branches are realized.
By definition, no heat flows into the system during

adiabatic branches. This condition can be realized in two
physically different ways. (i) One ensures that no heat at all
flows between the system and the bath by performing the
adiabats very fast, or by disconnecting the system from the
reservoir. During these adiabatic branches, the system
evolves deterministically regardless of the dynamics of
the baths. In general, reconnecting the bath and the system
at the end of such adiabat brings the system far from
equilibrium. To keep the cycle quasistatic, it is necessary to

secure that the system state just before the reconnection is
identical with the equilibrium state corresponding to the
bath temperature and system Hamiltonian at the time of
reconnection. (ii) One ensures that no heat is interchanged
on average only by carefully controlling the system
connected to the reservoir with varying temperature
[39,40]. Because of the coupling to the bath, the system
evolves during such adiabats stochastically.
We start with the traditional adiabatic branches (i) where

no heat at all is exchanged leading to a deterministic
evolution of the system during the adiabats. Then the work
PDF pðwÞ can be expressed as an average over the
distributions for internal energy increases ΔH2 and ΔH4

along the adiabatic branches 2 and 4, respectively [25]:

pðwÞ ¼ hδfw − ½W − gΔH2 − gΔH4�gi; ð3Þ

where gΔHi ¼ ΔHi − hΔHii, i ¼ 2, 4. The PDF for ΔH2

and ΔH4 can be constructed from the Boltzmann distribu-
tion ρðx; τiÞ ¼ exp ½−Hðx; τiÞ=kBTðτiÞ�=ZðτiÞ correspond-
ing to the system Hamiltonian and bath temperature at times
τi, i ¼ 1;…; 4 delimiting the adiabatic branches. Here, kB
denotes the Boltzmann constant and Z is the partition
function.
The PDF (3) allows us to calculate all moments of

work: hwni ¼ R
∞
−∞ dwwnρðwÞ. For the case of infinitely fast

adiabatic branches (t2 → 0 and t4 → 0), the microstate of
the system during the adiabatic branches does not change.
Assuming that the particle is at a microstate x at the
beginning of the first adiabat and at a microstate y at the
beginning of the second one, the energy differences in
Eq. (3) read ΔH2 ¼ Hðx; t1 þ t2Þ −Hðx; t1Þ and ΔH4 ¼
Hðy; tpÞ −Hðy; tp − t4Þ and the average therein must be
taken over the PDF ρðx; t1Þρðy; tpÞ. The work and power
fluctuation evaluated for the Hamiltonian (1) are then given
by [25]

eσw ¼ σw
W

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw2i −W2

p
W

¼ 1ffiffiffi
n

p kB
ΔS

: ð4Þ

The function eσw ¼ eσP, which quantifies observability of
the average work and power at the Carnot efficiency, is thus
finite and decreases both with the exponent n in the
Hamiltonian (1) and with the change of the system entropy
during the hot isotherm ΔS.
During the adiabatic branches (i) performed in a finite

time with the disconnected heat bath, the system undergoes
a nontrivial evolution determined by the Hamiltonian
(through Hamiltonian equations for classical systems and
the Schrödinger equation in quantum cases). To get an
analytical result valid for arbitrary H, we use the approxi-
mation that microstates occupied by the system at the
beginning of the adiabats are independent from those
occupied at their ends. Then, the assumption that the
system is in equilibrium both before the beginning and

FIG. 1. The operational cycle of the considered cyclic heat
engines. Gray lines depict the Hamiltonian (1) and the shaded
areas stand for the probability density of the particle position
during the cycle.
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after the end of the adiabats allows us to calculate the work
fluctuation along similar lines as in the previous case. The
result is [25]

eσw ¼ 1ffiffiffi
n

p kB
ΔS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − ηCÞ2

p
ηC

≥
1ffiffiffi
n

p kB
ΔS

: ð5Þ

Compared to the work fluctuation (4), eσw now depends on
the temperatures of the two baths via the Carnot efficiency
ηC. The additional factor is always greater than 1 and thus
Eq. (4) for the cycle with instantaneous adiabatic branches
sets the lower bound on Eq. (5).
The work fluctuations (4) and (5) are always nonzero.

Their origin can be mapped to disconnecting the system
from the baths during the adiabatic branches. According to
its definition w ¼ −

R tp
0 dt∂tHðx; tÞ, the work is in CHEs

done only if the Hamiltonian changes in time. Along a
quasistatic process, the reservoir causes many transitions in
the system on the timescale on which the external param-
eter corresponding to the work (e.g., the stiffness k here, a
piston position in thermodynamics) is varied. The time
spent by arbitrary quasistatic trajectory xðtÞ in a microstate
y within the time window ½t; tþ dt� is determined by the
Boltzmann distribution ρðy; tÞ. The work w done during a
quasistatic process along each trajectory is hence given by
the average work W ¼ −

R
dx

R tp
0 dt∂tHðx; tÞρðx; tÞ ¼

ðTh − TcÞΔS [25,26,41,42].
Quasistatic Carnot cycles with adiabatic branches

(ii) where the system can interchange heat with the bath
thus yield sharp work PDF,

pðwÞ ¼ δðw −WÞ; ð6Þ

with vanishing variance σ2w and fluctuation eσw. Different
from Eqs. (4) and (5), this result does not depend on the
system Hamiltonian. As one consequence, the large power
fluctuations found in the critical heat engine [4,6] can be
avoided by utilizing this type of quasistatic adiabatic
branches.
Comparison with steady state heat engines.—Steady

state HEs are connected to the hot and to the cold reservoir
simultaneously and operate in a nonequilibirum steady
state. They obey the current fluctuation relations [20–24]
which can be used to derive the inequality for the relative
work and power variance [9]

eσ2wt
≥
2kBTc

Wt

η

ηC − η
¼ 2kB

ΔSt
: ð7Þ

Here, Wt and ΔSt are the work and entropy generated
during time window ½0; t�. The formula (7) is valid in the
long time limit t → ∞, when the PDF for work attains the
large deviation form.
The formula (7) implies that it is not possible to construct

a SSHE working with Carnot’s efficiency η ¼ ηC,

delivering work with a finite fluctuation eσwt
and operating

reversibly with ΔSt ¼ 0, at the same time. The SSHEs
operating with ηC must either dissipate (ΔSt > 0) or yield
diverging work fluctuations (eσwt

→ ∞). This observation
is a HE analogy of the result obtained for Brownian
clocks [43].
Another striking difference between the CHEs and the

SSHEs is revealed if we rewrite our findings for CHEs in
terms of the Fano factor for work σ2w=W, which equals to
the ratio of constancy ΔP ¼ σ2Pt, t ≫ 1 [9] to the output
power P ¼ W=t. The formula (4) for a CHE operating with
Carnot efficiency gives

ΔP

P
¼ σ2w

W
¼ 1

n
ThηCk2B
ΔS

ð8Þ

and thus the Fano factor is in this case finite. Equation (5)
yields analogous results and the Fano factor corresponding
to the work PDF (6) even vanishes.
On the other hand, Eq. (7) for the SSHEs leads to

ΔPt

Pt
¼ σ2wt

Wt
≥ 2kBTc

η

ηC − η
; ð9Þ

which diverges whenever η → ηC. The work and power
fluctuations in the CHEs and in the SSHEs operating with
ηC thus significantly differ.
One may object that these conclusions are based on a

comparison of incompatible quantities—variables mea-
sured per cycle for CHEs and variables measured over a
long time for SSHEs. Nevertheless, measuring the quan-
tities for the CHEs over many cycles or over many
independent systems does not alter the main conclusions.
More precisely, averaging over N independent CHEs or,
equivalently, over N cycles of a single CHEs, both the
average output work W and its variance σ2w scale as N.
Therefore, although the fluctuation eσw scales as 1=

ffiffiffiffi
N

p
, the

ratio ΔP=P ¼ σ2w=W remains constant.
The difference between work in CHEs and SSHEs lies in

the very definitions of these variables. Work in CHEs is
done only when an external parameter changes and under
quasistatic conditions it is independent of the initial micro-
state of the system [25]. On the contrary, work in SSHEs is
usually done when the microstate x of the system changes.
During this thermally induced transition, the system inter-
nal energy is increased in ratchets [5], particles are trans-
ferred against gradients of chemical potential in
thermochemical heat engines [7,9], etc. Such defined work
depends on the initial and final points of the stochastic
trajectory fxðtÞgtpt¼0, which, e.g., determine the increase in
the internal energy in a ratchet, and thus it always
fluctuates. Work in SSHEs hence lacks the self-averaging
property of the work done in CHEs. It is rather similar to

the heat Q ¼ R tp
0 dt∂xHðx; tÞ_x in CHEs which is
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interchanged with the bath also only if the system micro-
state changes.
Our analysis implies that the work done in SSHEs and

that in CHEs represent two different stochastic processes
which cannot be directly mapped onto each other.
Nevertheless, such a mapping might be constructed if
the different definitions of work in the two classes of
HEs would be taken into account.
Cyclic Brownian heat engine.—Let us now propose an

actual CHE operating close to Carnot’s efficiency while
delivering a stable power output. Its engineering is rather
straightforward, it can be performed with an arbitrary
thermodynamic system capable of quasistatic operation.
In order to further demonstrate that such a HE can operate
in finite time, delivering a nonzero output power, we need a
system with controllable relaxation time. A paradigmatic
example of such a system from the field of stochastic
thermodynamics [44,45] is the overdamped Brownian
HE [8,27,46].
The HE is based on an overdamped Brownian particle

diffusing in a harmonic potential [47] Uðx; tÞ ¼ Hðx; tÞ ¼
kðtÞx2=2, whose dynamics obeys the Langevin equation

_x ¼ −kx=γ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=γ

p
ζ: ð10Þ

Here, ζ is the Gaussian white noise with hζi ¼ 0 and
hζðtÞζðt0Þi ¼ δðt − t0Þ. The relaxation time for the position,
τx ¼ γ=k, can be easily controlled in experiments through
the trap stiffness k. The friction coefficient γ is assumed to
be independent of k (yet it may depend on the temperature).
The model is valid if this relaxation time is much longer
than the relaxation time for the momentum, τp ¼ m=γ,
given by the ratio of the particle mass m to the friction γ.
The model (10) is exactly solvable and it has been
thoroughly investigated both theoretically [8,27] and exper-
imentally, using optical tweezers for generation of the
potential [46,48,49].
To demonstrate our results for instantaneous adiabatic

branches (i), we periodically modulate the bath temperature
T and the trap stiffness k using the Carnot-like driving
depicted in Fig. 1 with infinitely fast adiabatic branches. If
the cycle is performed in a finite time tp, with a non-
vanishing relaxation time τx, the system is during the cycle
inevitably out of equilibrium and the HE efficiency is
smaller than ηC. In order to realize the quasistatic Carnot
cycle using a finite tp, we thus need to use a very stiff trap,
which makes τx ≪ tp.
In Figs. 2(a) and 2(b), we introduce a suitable scaling of

the cycle duration tp and minimum and maximum trap
stiffness k during the cycle which, in the limit of infinite
scaling parameter σ∞, leads to a HE operating with
Carnot’s efficiency and delivering an infinite power with
fluctuation given by Eq. (4) with n ¼ 1. The convergence
of the output power, the power fluctuation, and the
efficiency to these values as the cycle becomes gradually

quasistatic with increasing σ∞ is plotted in Figs. 2(c)–2(e),
respectively. The curves are plotted using experimentally
motivated values of the model parameters [46]. Further
details are given in Supplemental Material [25]. The rest of
our results can be tested along similar lines.
Concluding remarks.—Unlike steady state heat engines

(SSHEs), cyclic heat engines (CHEs) can theoretically
operate reversibly with Carnot’s efficiency ηC, delivering
a large and stable power output Pwith finite fluctuation and
Fano factor. The main difference between the two classes of
heat engines lies in the definitions of work in the two
models. While the transitions caused in the system due to
the contact with the bath lead to averaging of work in
CHEs, such an averaging is not available for SSHEs. In the
latter case, the work always depends on the initial and final
point of a trajectory and thus inevitably fluctuates. The
recently proposed one-to-one mappings between SSHEs
and CHEs [17–19] thus break down on the level of work
fluctuations.
In practice, the described strategy does not allow us to

realize the strict limit η ¼ ηC at P > 0 without breaking the
system-reservoir timescale separation used in standard
thermodynamic models [12]. But it is possible to find
parameter regimes where realizable systems operate with
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FIG. 2. Behavior of the overdamped Brownian HE with the
scaling parameter σ∞. Timescale separation between the cycle
duration tp and the relaxation times τx (we show its smallest and
largest value during the cycle) and τp is depicted in panel (a). In
panel (b), kmax (kmin) stand for the maximum or minimum value
of the stiffness during the cycle. The shown values of cycle
durations tp and trap stiffnesses k are reasonable from exper-
imental perspective. In panels (c) and (d) we demonstrate
divergence of output power P and convergence of the relative
power fluctuation σ̃P to kB=ΔS as the efficiency η, shown in panel
(c), converges to ηC for large values of σ∞.
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efficiencies close to ηC and deliver large power P with
small fluctuation. Experimental realizations of such HEs
are possible using current micromanipulation techniques
such as optical tweezers [48,49]. Finally, we stress that our
results are valid for general HEs, including intensively
studied quantum models [50].
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