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The frequency of the breathing mode of a two-dimensional Fermi gas with zero-range interactions in a
harmonic confinement is fixed by the scale invariance of the Hamiltonian. Scale invariance is broken in the
quantized theory by introducing the two-dimensional scattering length as a regulator. This is an example of
a quantum anomaly in the field of ultracold atoms and leads to a shift of the frequency of the collective
breathing mode of the cloud. In this work, we study this anomalous frequency shift for a two-component
Fermi gas in the strongly interacting regime. We measure significant upwards shifts away from the scale-
invariant result that show a strong interaction dependence. This observation implies that scale invariance is
broken anomalously in the strongly interacting two-dimensional Fermi gas.
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Symmetries are an indispensable ingredient to any attempt
of formulating a fundamental theory of nature. Yet, it is not
always true that one can make accurate predictions about the
behavior of some complex system based on the symmetries
of its Hamiltonian alone. The fundamental reason behind
this is the concept of symmetry breaking [1]. Symmetry
violations often have drastic effects on the state of the
system, for example, when some metal breaks rotational
invariance and becomes ferromagnetic. There are three
different mechanisms through which a given system may
violate some of the symmetries of its Hamiltonian: explicit,
spontaneous, and anomalous symmetry breaking [2].
Quantum anomalies are violations of an exact symmetry

of a classical action in the corresponding quantized theory
[3]. They may occur when a cutoff has to be introduced to
regularize divergent terms. This regulator may explicitly
break some symmetry of the theory. If this symmetry is not
restored even after the cutoff is removed at the end of
the renormalization procedure, the symmetry is broken
anomalously.
Quantum anomalies are ubiquitous in quantum field

theories and provide important constraints on physical
gauge theories like the standard model [4,5] or on string
theories [6,7]. Whereas the formalisms of explicit and
spontaneous symmetry breaking are frequently applied
across many fields in physics [8–10], anomalous symmetry
breaking is typically associated only with high-energy
physics. One exception was found in molecular physics
[11,12], and here we report an observation of a quantum
anomaly in the field of cold atom physics.
A particular class of anomalies, called conformal anoma-

lies, break the scale invariance of a theory, that is, invariance
of the Hamiltonian under r → λr. The most prominent
examples are found in field theories like QED or QCDwhere
the renormalized coupling constants depend on the energy
scale and thus break scale invariance explicitly. In ordinary

quantum mechanics the 1=r2 and the δ2 potential in 2D are
well-known examples of conformal anomalies [13,14].
Notably, the δ2 potential is used to model contact

interactions in cold atom gases in two dimensions as V int ∝P
g0δ2ðri − rjÞ. Including the kinetic term Ekin ∝

P
p2
i ,

the total Hamiltonian scales asH → H=λ2 and it is thus scale
invariant. A direct quantization of the δ2 potential gives rise
to inconsistent results like a bound state with diverging
energy. A renormalization procedure is required to obtain a
well-defined and quantized theory. To this end, the bare
coupling constant g0 in the Hamiltonian is replaced by a
renormalized coupling g and a new length scale, the 2D
scattering length a2D, has to be introduced [15,16]. This
additional length scale anomalously breaks the scaling
symmetry of the bare Hamiltonian.
For an atom cloud trapped in an external 2D harmonic

potential, the scale invariance of the unregularized δ2

potential translates directly into a SO(2,1) symmetry of
the full Hamiltonian [17,18]. As a consequence of this
symmetry, the breathing or monopole mode of the cloud
follows undamped oscillations at twice the trap frequency
ωB ¼ 2ωR irrespective of the interaction strength. While it
was already noted in Ref. [17] that the required regulari-
zation of the δ2 potential leads to small deviations from
this result, Olshanii et al. [19] pointed out that this is in fact
an example of a quantum anomaly that can directly be
accessed via accurate frequency measurements of the
breathing mode in Fermi or Bose gas experiments.
The anomaly originates from the SO(2,1) symmetry of
the classical action that is broken in the quantized theory. A
substantial theoretical effort has been made to quantify the
anomalous corrections of the breathing mode frequency ωB
both at zero [19–22] and finite [23–25] temperature.
For two-component Fermi gases anomalous shifts up to

10% are expected that show a strong dependence on both
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interaction strength and temperature. At zero temperature a
rather large shift to frequencies above 2ωR is predicted
[21,22] while perturbative solutions at finite temperatures
show significantly reduced shifts on the order of 1%–2%
that even go below the scale-invariant value of 2ωR in the
strongly interacting region [23,24].
Experimentally, scale invariance has been studied with

2D Bose gases in Refs. [26–28], showing no significant
symmetry violation in the weakly interacting regime. The
strongly interacting regime in a 2D Fermi gas was
studied in Refs. [29,30], where on the level of the
experimental precision no significant deviation from
the scale-invariant result was observed. This was attrib-
uted to the relatively high temperatures of their system
and statistical errors on the same order as the expected
shifts at these temperatures [21].
In this work, we study the anomalous frequency shift of

the breathing mode in a 2D Fermi gas with high accuracy.
We perform our experiments with a two-component mixture
of 6Li atoms and approximately 104 particles per spin state.
The mixture is loaded into a highly anisotropic harmonic
trap. The trap frequencies are ωz¼2π×7.14 kHz and
ωR ≈ 2π × 22.5 Hz. The radial confinement is created by
an approximately equal superposition of an optical dipole
trap and a magnetic confinement proportional to

ffiffiffiffi
B

p
, where

B is the magnetic offset field. A detailed discussion of
frequency, anharmonicity, and anisotropy measurements of
the trap can be found in the Supplemental Material [31].
The aspect ratio of approximately 300∶1 between axial

and radial trap axes allows us to reach the kinematically
2D regime for low enough temperature T and chemical
potential μ [32]. We tune the scattering length a2D by
means of a broad magnetic Feshbach resonance [33]. In 2D
the phase diagram of the BEC-BCS crossover is charac-
terized by the two dimensionless parameters lnðkFa2DÞ
and T=TF with Fermi wave vector kF and temperature TF.
The temperature of the cloud T is extracted from the in situ
density distribution with the method established in
Ref. [34]. T=TF varies from 0.1 in the BEC limit to
0.18 in the BCS regime. The biggest effect of the quantum
anomaly is expected to appear in the strongly interacting
region around lnðkFa2DÞ ≈ 0 [21].
To excite the breathing mode, we reduce our optical

confinement adiabatically such that the cloud expands in
the trap. A sudden quench of the trap depth back to its
original value initiates the breathing mode oscillation. By
tuning the magnitude of the quench, we set the amplitude to
around 8% of the cloud width. In addition to the breathing
mode, the quench leads to a small collective dipole
oscillation of the center of the cloud. We do not observe
any excitations of higher order collective modes in our trap
using this procedure. We study both excited collective
modes simultaneously by taking in situ absorption images
along the axial direction of the cloud at different times after
the quench [see Figs. 1(a)–1(c)].

We extract the frequencies of the breathing mode ωB and
dipole mode ωD by fitting a damped sine function to the
oscillation of cloudwidth and center along both principal axes
x and y of the trap. The principal axes of our confinement are
determined and fixed by a principal component analysis of
independent measurements using a noninteracting gas
[31,35]. A typical data set along the x axis is shown in
Fig. 1(d). In total we obtain four frequency measurements
per scattering length (ωB;x, ωB;y, ωD;x, and ωD;y).
We observe ωB ≡ ωB;x ¼ ωB;y for all interaction param-

eters that are accessible in our experiment. This is expected
for the breathing mode in the hydrodynamic regime where
the scattering rate is much larger than the oscillation
frequency. The center-of-mass dipole modes, on the con-
trary, oscillate separately along both principal trap axes.
From the measured difference of the two frequencies, ωD;x

and ωD;y, we estimate that the in-plane anisotropy of our
trap is on the order of 2% [31].
In order to compare the measured breathing mode

frequencyωB to the scale-invariant result of 2ωR, an accurate
determination of the radial trap frequency is essential. To this
end, we use the dipole frequencies that coincide with the trap
frequency ωR, independent of interactions or temperature.
We take the average of the two measured dipole frequencies
as reference, ωR ≡ 1=2ðωD;x þ ωD;yÞ. This is justified by
the observation that the hydrodynamic breathing mode in the

(a) (b) (c)

(d)

FIG. 1. Breathingmode in a harmonic confinement. (a)–(c) In situ
images of the cloud along the strongly confined axial direction at
different hold times t ¼ 68–80 ms after quenching the trap depth
at t ¼ 0 ms. The inner (outer) dashed lines indicate the 1σ (2σ)
width of a Gaussian fit to the cloud profile. The images are
averaged over several experimental realizations and were taken at
larger amplitudes to make the oscillation more apparent. (d) The
cloud width σx as a function of the hold time t after the quench
(blue circles). The inset shows the complete data set from t ¼ 0 to
400 ms. The center-of-mass oscillations of the same cloud are
shown in red as a comparison (right, y axis). The solid lines are fits
of a damped sine function to the measurements.
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classical limit in a slightly anisotropic trap oscillates at this
average up to a correction on the order of less than 0.1%
[31,36]. The insensitivity of the breathing mode frequency to
small anisotropies is in agreement with calculations at zero
temperature [21].
The measured breathing mode is very weakly damped

with damping rates ΓB on the order of ΓB=ωR ≈ 0.003. The
latter coincide with the background damping rate of a
noninteracting cloud, confirming that, apart from technical
limitations, the breathing mode is undamped. The only
exception to this is the very strongly interacting region
around ln ðkFa2DÞ ¼ 0, where we observe significantly
larger, yet still small, damping rates of up to ΓB=ωB ≈
0.01. This is a first indication of a broken SO(2,1)
symmetry in the strongly interacting degenerate gas.
The measured average breathing and dipole frequencies

as a function of the magnetic offset field are shown in
Fig. 2. In the strongly interacting region around the
Feshbach resonance at B0 ¼ 832 G we find a significant
shift of the breathing mode to frequencies above twice the
dipole frequency (blue shaded area). In the weakly inter-
acting BEC and BCS limits the shift disappears and
the scale-invariant result ωB ¼ 2ωD ≡ 2ωR is restored.
The data point at B ¼ 700 G is shown grayed out due
to the significant heating rates we observe this far in the
BEC limit. Following Ref. [17], the observed frequency
shift necessarily implies that scale invariance is broken in
the strongly interacting region. As we will discuss in the
following, the only conclusive explanation for the signifi-
cant shift above 2ωR is the presence of the quantum
anomaly. All other relevant effects which explicitly break

the SO(2,1) symmetry result in a reduced breathing mode
frequency instead.
To enhance our confidence in using the dipole mode

measurement as reference, we fit a model for our trap
frequency ωRðB; σÞ to the measured dipole frequencies ωD.
By its dependence on the offset field B and the cloud width
σ, our model incorporates the magnetic field dependence
and the anharmonicity of our total confinement, respec-
tively. Two free parameters of the model are determined
from the fit.
Our model explains the measured dipole mode frequen-

cies remarkably well (orange solid line). We note that the
origin of the visible scatter of the dipole frequencies on top
of their statistical errors is just given by the fluctuations in
particle numbers of different data points. These fluctuations
translate into small frequency shifts through an anharmonic
correction term that is proportional to the cloud width σ
squared. The overall effect of the anharmonicity can be
estimated by a comparison to the same model while keeping
the cloud size σ0 fixed. We choose σ0 ¼ 65 μm such that it
matches with the measured cloud size in the BCS limit.
The black solid line shows the resulting frequencies in the
absence of anharmonic corrections. The effective trap
frequency is shifted by the anharmonicity by around 2%
in the BEC regime compared to the BCS regime (red shaded
area). In the same range interactions reduce the cloud size
from σ ¼ 65 μm to σ ¼ 44 μm in the BEC limit.
To exclude any further contributions of our trapping

potential experimentally, we have performed measurements
with two different spin mixtures. The difference in their
Feshbach resonance positions leads to different values
for ln ðkFa2DÞ at the same magnetic field B. We find no
significant effect of the mixture on the measured anomalous
shift (see Fig. 3), confirming that all magnetic field
dependencies of the potential were treated properly.
As a final test, we compare the model to measurements

in a noninteracting single spin component Fermi gas. Here,
the anomalous frequency shift is absent and only systematic
shifts from anisotropy or anharmonicity remain. Both
breathing and dipole frequencies and their dependence
on magnetic field and cloud width are very well explained
by our model without any additional deviations and we
observe no significant violation of scale invariance [31].
In Fig. 3 we show the relative frequency of the breathing

mode ωB=ωR as a function of the interaction parameter
ln ðkFa2DÞ. We observe an anomalous shift towards
higher frequencies up to a maximum of 1.3% around
ln ðkFa2DÞ ¼ 1. The maximum position coincides with
the region where we have found a many-body paired state
in the normal phase of our system in a previous measure-
ment [37] and is in agreement with zero temperature
calculations [21,22] based on a quantum Monte Carlo
simulation of the equation of state [38]. These predict an
anomalous shift of up to 10% with a maximum at
ln ðkFa2DÞ ≈ −0.5 (Fig. 3 inset).

FIG. 2. Measured average breathing and dipole frequencies
versus magnetic offset fieldB. Statistical errors are on the order of
the symbol size. The dipole frequencies were scaled by a factor of
2 to facilitate the comparison to the breathing mode. We fit a
model ωRðB; σÞ for our trap frequencies to the dipole frequency
measurements (solid orange line). The solid black line shows the
same model for a fixed cloud size.
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The frequency shifts observed in the experiment are
much smaller in magnitude. This issue is discussed
extensively in literature and there are several proposed
causes for the strongly reduced shift [20,24,39]. Thermal
fluctuations are expected to reduce the anomalous shift at
finite temperatures [21–24] and the beyond mean-field
approximation from Ref. [24] shows anomalous frequency
shifts of a similar order as our measurements at T=TF ¼
0.2 (Fig. 3 solid black line). Consistently, when increasing
the temperature of our sample by ΔT ¼ 0.1TF, we observe
a downwards frequency shift of the order of −5% [31].
In addition to the trap anharmonicity and anisotropy, we

are aware of a third effect that breaks the SO(2,1) symmetry
of our system explicitly: the presence of the third dimen-
sion. Figure 4 shows how the third dimension affects the
breathing mode frequency at fixed temperature and inter-
actions. As we increase N the quasi-2D description of our
system breaks down and the system becomes kinematically
three-dimensional. As the system leaves the 2D limit, we
observe a quick decrease of the measured frequencies
below the scale-invariant value of 2ωR. This is in agreement
with theoretical calculations, which predict breathing mode
frequencies of

ffiffiffiffiffiffiffiffiffiffi
10=3

p
ωRð≈1.83ωRÞ for a Bose gas andffiffiffi

3
p

ωRð≈1.73ωRÞ for a 3D Fermi gas confined to a
“pancake” trap in the unitary limit [40]. Explicit breaking
of scale invariance by the presence of the third dimension
has been studied before both experimentally [41] and
theoretically [41,42]. In a Bose gas a shift to lower
frequencies has been observed when increasing the ratio
of chemical potential to ωz.

Since both the expected and measured shifts of the
breathing mode introduced by the third dimension are
always negative, we conclude that measurements above
2ωR deep in the quasi-2D limit can only be attributed to the
presence of the quantum anomaly. We do, however,
identify the third dimension as one of the possible sources
for a reduced frequency measurement at any finite particle
number [39]. Whether the influence of finite temperature
and third dimension alone explain our measurements or if
additional effects, as suggested by Ref. [20], reduce the
anomalous shift further is an interesting question to be
investigated in the future.
The δ2 potential that we introduced as model for contact

interactions is just an approximation of the actual scattering
between cold atoms in nature. The exact scaling symmetry
holds solely in this approximate theory. A more fundamental
theory would contain a modified interaction term and the
resulting Hamiltonian would break the SO(2,1) symmetry
explicitly without requiring any renormalization procedure.
In this equivalent picture, the same frequency shift of the
breathing mode is then merely the consequence of the
explicit violation of scale invariance by the Hamiltonian.
Any anomaly can be understood in this way. In the

standard model, for instance, the appearance of quantum
anomalies is related to the fact that the underlying field
theories fail to accurately describe nature at small length
scales. In contrast to our system, the fundamental physical
description is still unknown in this case. This example
highlights the significance of the concept of quantum
anomalies in the formulation of effective theories that
accurately describe physics at larger length scales.
To conclude, we observe a significant, interaction-

dependent, frequency shift away from the scale-invariant
frequency ωB ¼ 2ωR. We have confirmed that other terms

FIG. 3. Anomalous shift of the breathing mode frequency. At
low temperatures the breathing mode shows a significant shift
away from the scale-invariant result of ωB ¼ 2ωR towards higher
frequencies, even after accounting for both the effects of anhar-
monicity and anisotropy of our trap. Our data agree with a beyond
mean-field approximation from Ref. [24] at T=TF ¼ 0.2 (solid
black line). The inset compares our data to a zero temperature
calculation from Ref. [21]. Circles and squares represent mea-
surements that were taken with different spin mixtures.

FIG. 4. Influence of the third dimension on the oscillation
frequency. As we increase the particle number we observe a
strong shift towards lower frequencies. On the x axis we plot the
measured particle number of one spin component N divided by
N2D ¼ 48000. N2D is the maximal number of noninteracting
atoms per spin state in the axial ground state of our trap at this
magnetic field. The dashed line is a straight connection between
the data points.
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that explicitly break the symmetry of the Hamilton cannot
explain the positive frequency shift of the breathing mode,
and we attribute it to the presence of a quantum anomaly.
We have identified both temperature and the third dimen-
sion as causes of the strongly reduced anomalous shift
compared to zero temperature calculations.
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