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At densities higher than the jamming transition for athermal, frictionless repulsive spheres we find two
distinct length scales, both of which diverge as a power law as the transition is approached. The first, ξZ, is
associated with the two-point correlation function for the number of contacts on two particles as a function
of the particle separation. The second, ξf , is associated with contact-number fluctuations in subsystems of
different sizes. On scales below ξf, the fluctuations are highly suppressed, similar to the phenomenon of
hyperuniformity usually associated with density fluctuations. The exponents for the divergence of ξZ and
ξf are different and appear to be different in two and three dimensions.
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A key signature of a critical phase transition is the
existence of a correlation length, ξ, which diverges at the
critical point. On scales smaller than ξ the constituents act
in a cooperative manner, whereas on large scales the system
typically behaves as if it were noninteracting [1,2]. The
correlation length is defined by the second moment of the
two-point correlation function for the local order parameter.
For nonequilibrium disordered transitions, however, the
local order parameter is not always known.
The jamming transition of a system of soft repulsive

spheres is an example of such a transition. It occurs at
temperature T ¼ 0 as the applied pressure (or packing
fraction) is increased driving the system from a floppy to a
rigid state. Although various length scales have been shown
to diverge as the jamming critical point is approached, they
do not characterize the structure itself but rather the normal
modes, the mechanical stability, and the elastic response of
the system [3–7].
In this Letter, we show that the onset of rigidity is

associated with the divergence of two distinct structural
length scales, ξZ and ξf, both associated with the contact
number. The contact number, Zi, is the number of neighbors
with which a particle i interacts and varies from one particle
to the next. One of these lengths, ξZ, is associated with the
decay of the two-point spatial correlation function forZ. Our
finding that ξZ diverges at the jamming transition motivates
us to examine the size of contact-number fluctuations in
subsystems of different sizes. In contrast to usual behavior of
critical points, where the long-range correlations result in

diverging fluctuations, here we find that the contact-number
fluctuations are highly suppressed on large scales. Namely,
at the jamming transition the contact fluctuations in a volume
of ld scale as its surface ld−1, which is the smallest possible
scaling consistent with local randomness in the contact
network. Thus, a system at the jamming transition appears
to have contact hyperuniformity, a term we introduce in
analogy to the concept of density hyperuniformity [8], which
was first observed in the mass distribution in the early
universe and in plasmas [9–11]. We note that similar
generalizations of hyperuniformity have been introduced,
e.g., in the study of foams [12], pattern formation [13], and
random fields [13]. At a finite distance from the jamming
transition, the hyperuniform scaling persists up to a finite
distancel < ξf, where ξf diverges at the jamming transition.
We show how the exponents characterizing the divergence at
the jamming transition of ξf and of ξZ are related; surpris-
ingly, both exponents appear to depend on the dimension of
the system, d in contrast to previously observed lengths that
diverge with dimension-independent behavior [3–5].
Our analysis is based on numerically generated packings

in either d ¼ 2 spatial dimensions with N ¼ 128 000
polydisperse, or d¼3 with N¼106 monodisperse friction-
less soft repulsive particles in a volume, V. The harmonic
repulsion between particles is given by
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where ϵ is the characteristic energy, ΘðxÞ is the Heaviside
step function, and rij and σij are, respectively, the sepa-
ration between particles i and j and sum of their radii.
Configurations are prepared by standard methods used for
studies of jamming [14,15]; spheres are distributed ran-
domly in space and the system’s energy is minimized using
the fast inertial relaxation engine [16] algorithm to produce
a zero-temperature jammed configuration where force
balance is maintained on every particle [17].
The simplest measure of correlations is a two-point

correlation function. To this end, we define δZi ≡ Zi − Z̄,
measuring the deviation of Zi from its average Z̄ ¼
ð1=NÞPiZi and its two-point correlation function
hZðr2;r1Þ¼hδZðr2ÞδZðr1Þi. Here, δZðrÞ¼

P
iδZiδðr−riÞ

where ri denotes the location of the particles center, and the
average is over different realizations and all equidistant
locations in the packing. Since the packing is isotropic and
homogenous, hZðr2;r1Þ ¼ hZðr2 − r1; 0Þ, and depends
only the distance between two points, for brevity it is
denoted by hZðr2 − r1Þ. For a finite number of realizations,
N0, hZðrÞ can be determined to an accuracy of 1=

ffiffiffiffiffiffi
N0

p
.

Since hZðrÞ decays to zero as a function of distance, a
growing number of realizations are needed to measure it
when r is large. We, therefore, measure the contact-number
structure factor

SZðqÞ ¼
1

N

�����
XN
i¼1

δZie−iq·ri
����
2�

: ð2Þ

Here, the average is over different realizations and direc-
tions of the wave vector q and therefore SZðqÞ depends only
on the magnitude of q. The relation between SZðqÞ and
hZðrÞ can be made apparent by using ρ, the particle density,
and the definition of δZðrÞ, which yields

SZðqÞ ¼ hðδZiÞ2i þ
1

ρ

Z
ddrhZðrÞe−iqr: ð3Þ

At the jamming transition in the thermodynamic limit,
Z̄ ¼ Zc ¼ 2d (here we do not include rattlers where Zi is
too small to confine a particle rigidly). This corresponds to
the minimal number of contacts needed for rigidity,
and ΔZ≡ Z̄ − Zc measures the distance from the critical
point [15,18,19]. Correlations in ΔZ have been previously
suggested [20,21], but their nature was not studied.
Figures 1(a) and 1(c) show SZðqÞ in d ¼ 2 and d ¼ 3, for

different values of ΔZ. As q → 0, SZðqÞ approaches a
constant that depends on ΔZ. At intermediate values of q,
this function rises steeply, approximately as a power law,
SZðqÞ∝qα, where α2d¼1.53�0.04 and α3d¼1.52�0.05.
The regime of q≳ 1, corresponding to wave vectors greater
than the inverse particle diameter, is not the focus of this
Letter. In the limit of ΔZ → 0, the power-law regime qα,
appears to extend to arbitrarily small q values, implying
that SZðq → 0Þ ¼ 0. Below we will argue that this has

important consequences for large-scale contact fluctua-
tions. In this limit, the real-space correlation function
decays as a power law with an exponent that is fairly
large: hZðrÞ ∝ −r−d−α. The negative sign can be inferred
from the fact that the first term in Eq. (3) is positive and can
only be reduced if hZðrÞ < 0 at large distances.
The transition between the first two regimes defines a

length scale, ξZ ¼ 2π=qc, where qc is the crossover wave
vector. This length scale diverges as ΔZ → 0, presumably
in a power-law manner ξZ ¼ ΔZ−νZ. To measure this length
scale, it is convenient to write SZðqÞ in the form of a scaling
function

(a) (b)

(c) (d)

(e) (f)

(h)(g)

FIG. 1. The length-dependent fluctuation of the contact number
at different values of ΔZ. The real-space fluctuations are shown
in (a) d ¼ 2 and (c) d ¼ 3 and the fluctuations in Fourier space in
(e) d ¼ 2 and (g) d ¼ 3. The values of ΔZ are shown in the
legend. The collapse of the data is shown in (b), (d), (f), and (h).
The number of particles in 2D is N ¼ 128 000 and in 3D is
N ¼ 106.
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SZðqÞ ¼ ΔZβfðqξZÞ: ð4Þ

This implies that the data can be collapsed by rescaling the
x axis by ΔZ−νZ and the y axis by ΔZ−β. To further
constrain νZ and β, we note that fðxÞ has two of the
following limiting behaviors:

fðxÞ ¼
�
const x ≪ 1

xα x ≫ 1:
ð5Þ

This scaling regime is cut off when q−1 becomes of the
order of several particle diameters. In the limit of qξZ ≫ 1,
SZðqÞ is independent of ΔZ implying that

β ¼ ανZ: ð6Þ
Thus, by measuring α, the data can be collapsed by

varying a single exponent. Figures 1(b) and 1(d) show the
collapse for both two and three dimensions, where the best
collapse is found for ν2dZ ¼ 0.7þ0.05

−0.1 and ν3dZ ¼ 0.85þ0.15
−0.1 .

The errors arise from the uncertainty in α and the finite
range of the data. Our results suggest that νZ may be
different in two and three dimensions, in contrast to other
critical exponents associated with jamming which do not
appear to depend on dimension. We note that we cannot
rule out that this apparent difference arises due to correc-
tions to scaling near the upper-critical dimension, thought
to be two dimensions in this case [22].
We turn next to consider what SZðqÞ implies for the

large-scale behavior of the contact fluctuations. We first
note that previously studied density hyperuniformity can be
measured from the low-q behavior of the density structure
factor, SρðqÞ¼ð1=NÞjPie

−iqri j2. The low-q limit describes
long length-scale density fluctuations [23]: Sρðq → 0Þ ¼
ðhN2i − hNi2Þ=hNi, where N is the number of particles in
the system. Therefore, if Sρðq → 0Þ ¼ 0, the density
fluctuations are subextensive and suppressed compared
to typical equilibrium systems [8], on par with those of a
perfect crystal. Our result that SZðqÞ → qα at low q at the
jamming transition implies that at the transition, the system
obeys contact hyperuniformity: the contact fluctuations are
highly suppressed at long length scales despite the local
randomness in Zi.
To take a closer look at contact hyperuniformity, we

measure contact fluctuations as a function of length scale.
We consider a subregion with linear dimension l, specifi-
cally a hypercube of volume ld in d dimensions. The
fluctuations of δZi ¼ Zi − Z̄ in hypercubes of this size are
characterized by

σ2ZðlÞ ¼
1

ld

��X
i∈ldδZi

�
2
�
; ð7Þ

where the angular brackets denote an average over different
subregions (of size l) in a given packing as well as different
realizations.

If the δZi were uncorrelated random variables, then
σ2ZðlÞ ∝ const, and any deviations from this would imply
correlations. Figure 1(e) shows σ2ZðlÞ in d ¼ 2 for different
values ofΔZ. Figure 1(g) shows the results are qualitatively
similar in d ¼ 3. At the smallest value of ΔZ, σ2Z
approaches l−1 at large l. This implies that fluctuations
in the contact number are suppressed; there must be
correlations in Zi to ensure this property as seen in
SZðqÞ. Surface fluctuations are inevitable since translating
slightly the measurement window varies which particles are
within the measurement window, and as result also the
contact number. Increasing ΔZ shows that the decay as a
function of l crossovers to what we will argue is a constant
at l ¼ ∞. This implies Poissonian fluctuations in this
regime. The crossover between these two behaviors defines
a length scale, ξf, which diverges as ΔZ → 0. Strangely,
this crossover appears to be very slow in comparison to the
data presented for SZðqÞ. We will argue that ξf is indeed
larger than ξZ, diverging faster than the latter.
We now argue that ξf ∝ ΔZ−νf diverges with an expo-

nent that is different from ξZ. To relate ξf to the measured
exponents in SZðqÞ, it is useful to express σ2ZðlÞ in terms of
the two-point correlation function. Using hZðr2; r1Þ ¼
hδZðr2ÞδZðr1Þi, it is straightforward to show that

σ2ZðlÞ ¼ ρhðδZiÞ2i þ
1

ld

Z
ld
ddr1

Z
ld
ddr2hZðr2; r1Þ; ð8Þ

where ρ is the density of particles and the integral is
over the hypercube. In the limit of l → ∞, surface
terms can be neglected, which leads to σ2Zðl → ∞Þ ¼
ρhðδZiÞ2i þ

R
ddrhZðr; 0Þ. This is also equal to

SZðq → 0Þ=ρ [see Eq. (3)] such that if SZðqÞ ∝ qα on all
length scales, then fluctuations are subextensive,
σ2Zðl → ∞Þ ¼ 0.
On finite scales the relation is more subtle, leading to two

distinct length scales. Reference [24] considers the relation
between the structure factor and scaling of the density
fluctuations as a function of scale. We apply their analysis
here to the contact statistic and find that if SZðqÞ ∝ qα, then
asymptotically σ2ZðlÞ ∝ l−ψ, where

ψ ¼
�
α α < 1

1 α > 1:
ð9Þ

This nonanalytic relation arises because the fluctuations
cannot decay faster than l−1—the contribution due to
fluctuations on the surface [25]. Since in our case α > 1, we
expect that near the jamming transition σ2ZðlÞ ∝ l−1 in
agreement with the data in Figs. 1(e) and 1(g). The
exponent νf can be estimated by comparing l−1 to the
asymptotic behavior σ2Zðl → ∞Þ ¼ SZðq → 0Þ=ρ ∝ ΔZβ,
yielding νf ¼ β. Using the values of β obtained in the
collapse of SZðqÞ, we find that ν2df ¼ 1.07þ0.1

−0.18 and
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ν3df ¼ 1.29þ0.27
−0.19 . Figures 1(f) and 1(h) show that these

exponents provide a reasonable collapse of σ2ZðlÞ. Thus,
as we asserted above, the fluctuation length scale diverges
with an exponent different from that of the correlation
length. We argue that generically for systems that have
suppressed fluctuations there are two distinct length scales
satisfying νf > νZ, when α > 1, and a single length scale
νf ¼ νZ, when α < 1.
In summary, we have shown that there are two diverging

length scales that characterize the contact fluctuations near
the jamming transition. Unlike traditional equilibrium criti-
cal phenomena, the diverging length scale in the two-point
correlations of ΔZ is not accompanied with large fluctua-
tions but rather with the suppression of contact fluctuations
on large scales. Indeed, it is precisely this smallness of
fluctuations that makes this structural “order” elusive, as
there are no large-scale features seen to the naked eye.
The small fluctuations in Zi suggest that it should be

considered a control parameter, analogous to temperature in
the Ising model, rather than as an order parameter. If we
adopt this view, the Harris criterion compares the average of
the control parameter, ΔZ inside a volume ξdf to its
fluctuations. Stability requires that the average must vanish
faster than the fluctuations. The average coordination
number scales asΔZ, while contact hyperuniformity implies
that the fluctuations scale as the surface area of the region of
size ξf, as our simulations suggest. The magnitude of the
fluctuations scales as the square root of the variance, namely

ξ−ðdþ1Þ=2
f . Comparing these, we obtain the inequality

νf >
2

dþ 1
: ð10Þ

The fact that our observed values obey this inequality in
d ¼ 2 and d ¼ 3 suggests thatΔZ should indeed be viewed
as the control variable rather than an order parameter. We
note that while the Harris criterion is usually employed in
disordered systems in which fluctuations in the control
parameter are quenched, here the fluctuations Zi emerge
from many-body interactions.
This conclusion is consistent with the choice made in the

scaling ansatz for the jamming transition [26], which
suggests that packing fraction and shear strain should be
considered the order parameters. However, there are no
apparent diverging length scales in the two-point correla-
tions of the packing fraction [27]. A single contact connects
two particles and is, therefore, related to the two-point
density correlation function. Therefore, the two-point con-
tact correlations studied here correspond to four-point
density correlations. Our results demonstrate that while
order can sometimes be found in plain sight, its identifica-
tion, especially in disordered systems, may require a care-
fully tailored higher-order correlation function, as has been
proposed for glasses [28,29].

Our results on contact hyperuniformity should be com-
pared to recent studies of density fluctuations at or above
the jamming transition. It has been suggested that systems
at and above the jamming transition are hyperuniform in
density [30–35], but this is controversial. The findings of
Refs. [27,36–38] support the absence of density hyper-
uniformity above the jamming transition; states prepared
upon approach to jamming from below appear to be even
less hyperuniform with better equilibration [39]. However,
studies of very large systems that explicitly identify a
crossover length ξρ, below which the system is uniform
[40], suggest that ξρ might increase somewhat in the dual
limit as the pressure is decreased toward the jamming
transition and the equilibration time increases [40]. Density
hyperuniformity has also been predicted for sedimentation
[41] and periodically sheared suspensions [42,43].
Our findings open the door to studying several aspects of

the jamming transition. Dynamics: in studying jamming
dynamics, our spatial metrics could be used study how
spatial order evolves as the spheres approach the jammed
state. This is characterized by a dynamical exponent
relating relaxation time to the correlation length,
τ ∝ ðξZÞμ. Such an exponent was identified in the first
study of the jamming transition by Durian [18]. Interplay of
structure and elasticity: we expect that ξZ and ξf should be
reflected in the diverging length scales found in elasticity
[3,5,44,45]. We note that Ref. [45] finds a length scale that
diverges as ΔZ−0.66 in two dimensions, consistent with the
length scale found in SZðqÞ [46]. Role of dimensionality:
our results suggest that some of the exponents depend on
dimension, in contrast to previous findings. This suggests
that contact hyperuniformity has a non-mean-field flavor in
low dimension. It would be interesting to examine this
length scale in mean-field calculations.
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