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Electron motion in combined strong laser and Coulomb fields is central to laser-matter interactions.
By mapping this problem onto the motion of a guiding center, we derive a reduced model which naturally
embeds important Coulomb effects such as focusing and asymmetry, and clearly distinguishes direct versus
rescattered electron ionization processes. We demonstrate the power of this tool by unraveling the
bifurcation in photoelectron momentum distributions seen in experiments.
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Subjecting atoms or molecules to intense laser fields
gives rise to a variety of nonperturbative and highly
nonlinear phenomena, such as high-harmonic generation,
nonsequential multiple ionization, and high-order above-
threshold ionization (ATI). All these phenomena are based
on the key mechanism of attosecond physics, namely the
recollision [1–6]. A recollision is obtained when an
electron (i) tunnel ionizes, (ii) freely travels in the laser
field, and then upon return to the ionic core, (iii) either
recombines into an atomic- or molecular-bound state, or
undergoes inelastic or elastic scattering. Ionized electron
rescattering has broad applications in atomic and molecular
physics. For example, by experiencing a strong ion-electron
interaction, rescattered electrons probe the atomic or
molecular structure. This is the basis for imaging tech-
niques, e.g., laser-induced electron diffraction [7–9] for
molecular imaging [10] and photoelectron holography [11].
These techniques exploit the fact that photoelectron
momentum distributions (PMDs) encode information on
the structure of the atom or molecule. Understanding the
photoelectron dynamics and identifying the mechanisms
responsible for the shape of the PMDs are essential steps
toward predicting and controlling [12] these strong-field
phenomena.
As laser parameters are varied, the shape of the PMDs

undergoes drastic changes. To assess these qualitative
changes in experiments [13,14], the location of the peaks
of the PMDs is followed as a function of the laser ellipticity.
For low ellipticity, the shape of the PMD is a single cloud
peaked at the origin, as a signature of Coulomb focusing
[15,16]. For larger ellipticities, the cloud splits into two
lobes as the Coulomb focusing recedes. Along the major
polarization axis, the lobes’ peaks are shifted from the
origin, which is a signature of Coulomb asymmetry
[17,18]. The hypothesis made in Ref. [13] is that there
is a bifurcation when varying the ellipticity of the laser
field. This bifurcation translates into a bifurcation in the
ATI spectrum—that is, the energy distribution of the

ionized electrons—as observed in Fig. 1(a). When the
peak of the PMD is near the origin, the maximum of the
ATI spectrum is near zero energy. When the PMD splits
into two lobes, the energy at which the ATI is maximum
increases (mostly linearly) with increasing ellipticity.
Both classical [19] and quantum [20] simulations suc-

cessfully reproduce the PMDs observed experimentally.
However, the underlying dynamical mechanism leading to
the drastic changes of shape of these distributions for
varying ellipticities is an open question. Standard and
widely used methods for the interpretation of the PMDs,
like the strong-field approximation [1,2] (SFA) and the
Coulomb-perturbed SFA [17], fail to predict these changes
at low ellipticities, in particular the bifurcation observed in
Ref. [13]. The SFA neglects the Coulomb field after tunnel
ionization so it cannot capture the Coulomb asymmetry,
and the perturbative treatment of the SFA is not sufficient to
capture well Coulomb focusing. Our objective in this Letter
is to explain the PMDs and their qualitative changes in
terms of microscopic mechanisms given by the electron
dynamics as laser parameters are varied, using a method
which fully takes into account the Coulomb field.
We begin by building a reduced classical model to

describe the photoelectron motion in combined strong
laser and Coulomb fields. This reduced model reproduces
the PMDs and clearly exhibits the bifurcation in question.
Analyzing this model in terms of its trajectories allows us to
uncover the mechanisms responsible for the bifurcation. In
a nutshell, we demonstrate that the bifurcation of the ATI
spectrum is a consequence of the depopulation of the
Rydberg states of the guiding center after a critical
ellipticity. The integrability of our reduced model allows
us to obtain an explicit expression for the critical ellipticity
as a function of the parameters of the laser and the atom.
We consider an elliptically polarized electric fieldEðtÞ ¼

fðtÞE0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ 1

p
½cosðωtÞx̂þ ξ sinðωtÞŷ�, where E0, ω, f,

and ξ are the field amplitude, frequency, envelope, and
polarization, respectively. After tunnel ionization, the
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trajectory of the electron is obtained classically. The initial
conditions of the electron ðr0;p0Þ are determined by t0 and
p⊥, the ionization time and the initial transverse velocity,
respectively. The electron is initially at the outer edge of the
potential barrier, in the opposite direction of the electric field,
i.e., r0 ¼ −½IpEðt0Þ=2jEðt0Þj2�f1þ ½1 − 4jEðt0Þj=I2p�1=2g,
where Ip is the ionization potential of the atom. The initial
longitudinal velocity of the electron is zero, i.e., p0 ¼ p⊥n̂,
for a unit vector n̂ such that n̂ · Eðt0Þ ¼ 0. In classical
trajectory Monte Carlo (CTMC) simulations, ensembles of
trajectories are integrated, with each one weighted by the
adiabatic ionization rate given by the Ammosov-Delone-
Krainov [21] (ADK) and the Delone-Krainov [22,23] (DK)
theories, corresponding to the trajectory’s t0 and p⊥. We
discuss nonadiabatic effects (following Ref. [14]) in the

Supplemental Material [24]. The trajectory with the highest
weight corresponds to the trajectory initiated with zero
velocity (p⊥ ¼ 0) at the peak of the electric field, when
the barrier width is the thinnest. We refer to this trajectory
as the T trajectory. Here, we take the ionization time of
the T trajectory to be ωt0 ¼ π. The final momentum of the
T trajectory is denoted P ¼ Pxx̂þ Pyŷ. We assume that
when the T trajectory is not rescattered, the location of the
peak of the PMDs is at P.
In the SFA, the T trajectory reaches the detector without

experiencing a recollision with the ionic core for all laser
polarizations, with a final momentum equal to its initial
drift momentum. In Fig. 1(b), we show the final momen-
tum of the T trajectory, which in the SFA is PSFA ¼
ŷðE0=ωÞξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ 1

p
. The SFA solution does not exhibit

a bifurcation for increasing ellipticity, in contradiction
with the ATI spectrum depicted in Fig. 1(a) and the
experimental results [13,14].
In order to remedy this shortcoming, a Coulomb-

perturbed SFA [17] is used in Ref. [13]. The correction
of the final electron momentum is given by ΔP ¼
−
R
∞
t0

rSFAðtÞ=jrSFAðtÞj3dt, where rSFAðtÞ is the SFA
electron trajectory. In Fig. 1(b), we see that the
Coulomb-corrected final momentum of the T trajectory,
i.e., P ≃ PSFA þ ΔP, does not exhibit a bifurcation for
increasing ellipticity either, nor does it predict a change of
dynamical behavior of the T trajectory. In addition, it was
noted in Ref. [13] that this method does not predict
correctly the location of the center of the PMDs for low
ellipticities both in Px and in Py. Hence, for low ellipticities
and this range of laser parameters, a perturbed SFA is not
the adapted framework for including the Coulomb inter-
action in order to assess the PMDs.
Instead of perturbing the SFA, we consider here an

averaging method over a fast timescale to describe the
photoelectron dynamics. In the dipole approximation for-
mulated in the length gauge, the dynamics of the electron
interactingwith an electric field and an ionic core is governed
by the Hamiltonian

Hðr;p; tÞ ¼ jpj2
2

þ VðrÞ þ r ·EðtÞ; ð1Þ

where atomic units (a.u.) are used unless stated otherwise.
Here, the atom is He (Ip ¼ 0.9 a:u:), the field wavelength
is λ ¼ 780 nm (ω ¼ 0.0584 a:u:), and the laser intensity is
I ¼ 8 × 1013 Wcm−2 (E0 ¼ 0.048 a:u:). The field envelope
f consists of a two laser-cycle plateau followedbya two laser-
cycle linear ramp down, unless stated otherwise. The position
of the electron is r, and its canonically conjugate momentum
is p. We use a soft Coulomb potential [30] VðrÞ ¼
−ðjrj2 þ 1Þ−1=2 to describe the ion-electron interaction.
Averaging Hamiltonian (1) over the fast timescale, set by

the period of the laser field, using a canonical transformation
[24] reveals that the electron oscillates around a trajectory
which we refer to as the guiding-center trajectory, as shown

FIG. 1. (a) ATI spectrum as a function of ellipticity, computed
using CTMC from Hamiltonian (1). The color scale indicates the
probability distribution of photoelectron energies. The gray curve
is the prediction of our model. (b) The T trajectory (see text) final
momentum P ¼ Pxx̂þ Pyŷ as a function of the laser ellipticity.
The solid colored curves and circles are computed using our
model and Hamiltonian (1), respectively. The shaded area is
where the T trajectory is rescattered in both our model and
Hamiltonian (1). The solid and dashed black curves are computed
using the SFA and the perturbed SFA, respectively (the lower
curves correspond to Px and the upper curves to Py). (c),(d) The T
trajectory for ξ ¼ 0.25 (c) and ξ ¼ 0.5 (d) shown for f ¼ 1. The
blue and cyan solid curves are the T trajectory of Hamiltonian (1)
and our model, respectively. The dashed cyan curve is the
guiding-center trajectory of the T trajectory. The black crosses
show the initial position of the T trajectory. Distances, momenta,
and energies are scaled by E0=ω2, E0=ω, and Up, respectively.
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in the lower panels of Figs. 1(c) and 1(d). At the lowest order
of the perturbative expansion, the electron phase-space
coordinates are of the form

r ¼ rg þEðtÞ=ω2; ð2aÞ
p ¼ pg þAðtÞ; ð2bÞ

where ðrg;pgÞ are the canonically conjugate variables of the
guiding center, and AðtÞ is the vector potential. Here, it is
straightforward to see thatpg is the electron drift momentum.
The guiding-center dynamics is governed by the averaged
Hamiltonian

H̄ðrg;pgÞ ¼
jpgj2
2

þ VeffðrgÞ: ð3Þ

We notice that this Hamiltonian no longer depends on time,
as a result of averaging. Consequently, its energy E ¼
H̄ðrg;pgÞ is conserved. At the lowest order in the perturba-
tive expansion,VeffðrgÞ ¼ VðrgÞ. Thus, the angular momen-
tum of the guiding center is also conserved, and the system is
integrable in the Liouville sense. At higher order in the
perturbative expansion, the effective potential corresponds to
the first nontrivial order of the Kramers-Henneberger poten-
tial [31] and depends on the laser parameters. In this case, the
angular momentum is no longer conserved, and as a
consequence, the averaged system is no longer integrable.
Our reduced model is valid for all positive energies and
when ω ≫ ωg ¼ ð2jEjÞ3=2 for negative energy, where ωg is
the approximate frequency of the guiding-center trajectory,
provided the electron and the guiding center are outside
the ionic core region. Here, we focus on the lowest-order
model.
In our model, after tunnel ionization, the electron is

driven by a guiding center. The initial conditions of the
guiding center of the electron are determined by substitut-
ing the initial conditions of the electron ðr0;p0; t0Þ in
Eq. (2). Then, the guiding-center dynamics is governed by
Hamiltonian (3). When the electric field is turned off, the
vector potential vanishes and the electron coordinates, in
particular the momenta, become the same as that of the
guiding center. Figure 2 shows photoelectron angular
distributions (PADs) computed using CTMCmethods from
Hamiltonian (1), which is compared with CTMC calcu-
lations from the SFA, the perturbed SFA [17], and our
model. In the left panel, we observe excellent agreement
between the prediction of our model and the full system
before averaging. Moreover, because only direct electrons,
i.e., the ones that do not undergo rescattering, reach the
detector in our model, it becomes possible to locate
rescattered electron contributions in the full system. For
example, we observe two peaks around π=3 and 4π=3 in the
CTMC curve that are absent in the PAD of our model,
corresponding to the rescattered electron contribution. In
the right panel, we observe that predictions of both the

perturbed SFA and our model are in agreement with the full
system. The shift of the true PADs compared to the SFA
prediction is known as the Coulomb asymmetry [17,18].
In order to understand this phenomenon from a dynamical
point of view, as well as the bifurcation in the ATI
spectrum, we apply our model to analyze the T trajectory.
Figures 1(c) and 1(d) compare the T trajectory computed

from Hamiltonian (1) and our model. The energy of the
guiding center of the T trajectory is denoted ET . If ET > 0
[Fig. 1(d)], the guiding-center trajectory is unbounded, and
the T trajectory reaches the detector without recolliding,
with final momentum P. However, the T trajectory is
deflected due to the effective Coulomb interaction in the
averaged Hamiltonian (3). The Coulomb asymmetry
observed in Fig. 2 is the direct consequence of this
deviation. If ET < 0 [Fig. 1(c)], the guiding center pop-
ulates Rydberg states of Hamiltonian (3) after tunnel
ionization; i.e., the guiding-center trajectory is bounded,
and the electron must return to the ionic core. During
rescattering, the energy of the guiding center jumps to
another energy level [since the averaged model (3) is not
valid close to the ionic core] and then could ionize if its
energy is positive after rescattering. In addition, we notice
that if the field envelope lasts only a few laser cycles, i.e.,
less than the period of the Rydberg orbit, then the electron
is captured in a Rydberg state [32,33].
The energy of the guiding center ET depends on the laser

parameters, and in particular on the field ellipticity, through
the change of initial coordinates (2). There exists a critical
polarization ξc such that ETðξcÞ ¼ 0. An approximation of
the critical ellipticity [24] is

ξc ≃
ffiffiffi
2

p
ω2

E3=2
0

ð1þ γ2=2Þ−1=2; ð4Þ

where γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ip=2Up

p
is the Keldysh parameter [34]

and Up ¼ E2
0=4ω

2 is the ponderomotive energy. We
have assumed that VðrgÞ ≃ −1=jrgj, ξ2c ≪ 1, and r0 ≃
x̂Ip

ffiffiffiffiffiffiffiffiffiffiffi
ξ2cþ1

p
=E0. If ξ < ξc then ET < 0, and the T trajectory

FIG. 2. Polar plots of the PADs for ξ ¼ 0.25 (left panel) and
ξ ¼ 0.5 (right panel) computed using CTMC. The computation
from our model (cyan) is in agreement with the one from
Hamiltonian (1) (blue). Also shown are computations using the
SFA (solid black line) and the perturbed SFA (dashed black line).
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is rescattered. In our model, the observable P does not exist
in this case, because the T trajectory does not reach the
detector. If ξ > ξc then ET > 0, and the T trajectory reaches
the detector without recolliding. For I ¼ 8 × 1013 Wcm−2,
the critical field polarization obtained from Eq. (4) is
ξc ≃ 0.32, in agreement with Fig. 1(a). For I ¼
8 × 1014 Wcm−2, the critical field polarization obtained
from Eq. (4) is ξc ≃ 0.08, in agreement with experimental
measurements [13]. For I ¼ 1.2 × 1014 Wcm−2, a wave-
length of 790 nm and an Ar atom, it is given by ξc ≃ 0.27,
also in agreement with experimental measurements [14].
We notice that the ad hoc criterion used in Ref. [13] based
on the perturbed SFA theory [17] does not provide a correct
estimate of ξc for intensities smaller than 5 × 1014 Wcm−2.
The final momentum of the guiding center of the T

trajectory isP ¼ ffiffiffiffiffiffiffiffi
2ET

p ðx̂ cosΘþ ŷ sinΘÞ for ξ ≥ ξc, where
Θ is the scattering angle. Assuming that VðrgÞ ≃ −1=jrgj,
the scattering angle is Θ ¼ π=2þ sin−1ð2ETl2 þ 1Þ−1=2,
where l is the guiding-center angular momentum. Close
to the bifurcation, the guiding-center energy is ET ≃
4Upξcðξ − ξcÞ, and we have

Px ≃ −
ffiffiffiffiffiffiffi
2ξc

p
ðE0=ωÞðξ − ξcÞ1=2; ð5aÞ

Py ≃ 2
ffiffiffi
2

p
ðE0=ωÞðξ − ξcÞ: ð5bÞ

We notice that the bifurcation is observed for bothPx and
Py. Consequently, we show that Coulomb focusing breaks
down when Coulomb asymmetry becomes significant, as
experimentally observed [13]. We notice that this model
does not reproduce quantitatively the Px observed in [13],
whereas the full classical solution of Hamiltonian (1) does.
For the range of parameters used in this experiment, the
tunnel exit is close to the ionic core as compared to the
quiver radius, so the hypotheses underlying the model are
not met initially. In particular, we observe that the guiding-
center energy is not conserved for a short transient
(∼0.2 × 2π=ω) after tunnel ionization.
Two kinds of photoelectrons coexist—direct and rescat-

tered electrons—and contribute to the PMDs, and both are
essential for probing the ion-electron interaction. However,
the chaotic behavior of the rescattered electron trajectories,
as shown in high-energetic part of ATI spectra [35], reduces
their local contribution in the PMDs. Figure 3 shows the
scattering angle of the electron as a function of the initial
conditions ðt0; p⊥Þ, computed from the trajectories of
Hamiltonian (1). We observe chaotic regions which are
the signature of the highly nonlinear interactions driving
the electrons during rescattering. Two main chaotic regions,
centered at ωt0 ¼ π and ωt0 ¼ 3π=2, are surrounded by
initial conditions leading to electrons trapped into Rydberg
states. We refer to this set of domains as the rescattering
domain. In our model, the rescattering domain is determined
by E < 0, and the black lines in Fig. 3 are its boundaries
E ¼ 0. We notice the very good agreement between the

region E < 0 in our model and the set of trajectories
which have undergone rescattering or remained trapped
in Rydberg states. In the upper panel of Fig. 3, we observe
that for ξ < ξc, the initial conditions of the T trajectory
belong to the rescattering domain. Hence, even if the
rescattered trajectories are heavily weighted by the ADK
ionization rate, their local contribution in the PMDs is
relativelyweak. Consequently, the electrons that contribute
the most are the ones close to the boundaries of the
rescattering domain, corresponding to electrons reaching
the detector with energy E ¼ 0. Therefore, the maximum of
the ATI spectrum is at zero energy. As the laser parameters
are varied, particularly the ellipticity, the rescattering
domain moves in the plane of initial conditions after tunnel
ionization. For ξ > ξc, the T trajectory no longer belongs to
the rescattering domain, as seen in the bottom panel of
Fig. 3, so the ATI spectrum is peaked at ET and the PMDs
are dominated by direct electrons. Thus, we predict that the
peak of the ATI spectrum is located at E ¼ maxð0; ETÞ,
corresponding to the gray curve in Fig. 1(a). We notice that
when ξ increases further away from ξc, the rescattering
domain moves to regions of initial conditions with very
lowADK ionization rate. Consequently, the contribution of
rescattered electrons and electronswith energy E ¼ 0 in the
PMDs becomes very weak. Hence, we observe a lack of
electrons in the neighborhood of the origin of the PMDs.

FIG. 3. Scattering angle of the electron of Hamiltonian (1) as a
function of the initial conditions ðt0; p⊥Þ, for ξ ¼ 0.25 (upper
panel) and ξ ¼ 0.5 (lower panel), for a field envelope f with an
eight laser-cycle plateau and a two laser-cycle ramp down. The
final electron energy is negative in gray areas. The black lines
show where the guiding-center energy is E ¼ 0 according to our
model (3). The crosses show the initial conditions of the T
trajectory. The dashed lines are the level curves of the ADK and
DK ionization rate normalized by the maximum. The momentum
p⊥ is in atomic units.
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In summary, we determined the microscopic mechanisms
responsible for the shape of PMDs from the analysis of
Hamiltonian (3), and in particular, we showed that the
change of shape observed in Refs. [13,14], as ellipticity is
varied, corresponds to a bifurcation. Our approach is based
on a guiding center driving the photoelectron motion. This
model provides several predictions on the photoelectron
motion and the shape of the PMDs, and allows the control of
the ratio between theyield of rescattered anddirect electrons.
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