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The rapidly developing and converging fields of polaritonic chemistry and quantum optics necessitate a
unified approach to predict strongly correlated light-matter interactions with atomic-scale resolution.
Toward this overarching goal, we introduce a general time-dependent density-functional theory to study
correlated electron, nuclear, and photon interactions on the same quantized footing. We complement our
theoretical formulation with the first ab initio calculation of a correlated electron-nuclear-photon system.
For a CO2 molecule in an optical cavity, we construct the infrared spectra exhibiting Rabi splitting between
the upper and lower polaritonic branches, time-dependent quantum-electrodynamical observables such as
the electric displacement field, and observe cavity-modulated molecular motion. Our work opens an
important new avenue in introducing ab initio methods to the nascent field of collective strong vibrational
light-matter interactions.
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Remarkable experiments at the interface of condensed
matter physics, quantum chemistry, and quantum optics
have sparked recent interest in understanding strongly
correlated electronic, nuclear, and electromagnetic field
degrees of freedom induced by strong light-matter cou-
pling. Experimentally different regimes including optome-
chanics in picocavities [1], vibrational ultrastrong coupling
for chemical systems [2], strong coupling of surface
plasmon polaritons and molecular vibrations [3], the
anomalous Raman response under strong light-matter
coupling [4], thermodynamics of strongly coupled mole-
cules [5], and the change of the reaction rates under strong
light-matter coupling [6] have been explored. Theoretically,
such strong coupling has been analyzed for cavity-
controlled chemistry via a polaron decoupling [7], vibra-
tionally dressed polaritons [8], changes in potential-energy
surfaces [9,10], spectroscopy [11], or changes in the ground
state under ultrastrong coupling [12].
Recently, first-principles methods such as density-

functional theory (DFT) including time-dependent den-
sity-functional theory (TDDFT) have been generalized
to the realm of correlated electron-photon interactions.
This quantum-electrodynamical density-functional theory
(QEDFT) [13–16] treats electrons and photons on the
same quantized footing. As an exact reformulation of the
Schrödinger equation, QEDFT can predict exactly corre-
lated electron-photon dynamics in full real space [16],
linking closely with experimental observables. QEDFT has
been shown to correctly capture correlated electron-photon
systems [17,18], but so far has not been demonstrated
for problems in strong vibrational-photon coupling as
observed in recent experiments [1–3,6]. Yet, vibrational
effects play a critical role in chemical reactions, e.g.,
altering the vibrational mode by strong light-matter

coupling has been demonstrated to directly influence the
reaction [6] potentially allowing for a site-selective chemi-
stry. Because in strong vibrational-photon coupling experi-
ments, the vibrational energies are on the same order of
magnitude as the cavity mode, theory requires treating both
on the same level of theory [19]. To computationally
capture the correlated nature of the electron-nuclear inter-
action, many different approaches have been pursued in a
DFT framework [20–27]. However, none of these methods
include quantized electromagnetic fields which are essen-
tial for cavity-correlated effects [28].
We close this critical gap and present a comprehensive

theory that is capable of treating electron-nuclear-photon
systems on the same quantized footing. In this Letter, we
discuss an important generalization of QEDFT to the realm
of nuclear interactions with strong implications for experi-
ments in cavity-driven molecule-light interactions.
The general setup of the theory is as follows. The matter

component of the correlated system contains ne electrons
and NN ¼ P

K
I¼1 NI nuclei. With K we specify the number

of different nuclei species, each containing NI nuclei.
We define a nuclei species I by common charge ZI and
mass MI . If a nuclear species contains more than one
nucleus, these particles are physically indistinguishable, as
is the case for more than one electron. The matter
component of the system is coupled to N quantized
electromagnetic field (photon) modes. In the nonrelativistic
limit, length gauge, and dipole approximation [33], the
dynamics of the system is given by the time-dependent
Schrödinger equation [19]:

i
∂
∂tΨðr;R; q; tÞ ¼ ĤðtÞΨðr;R; q; tÞ; ð1Þ
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with initial state Ψ0ðr;R; q; t0Þ, where we introduce the
following notation for the electronic coordinates r ¼
ðr1;…; rneÞ, the nuclear coordinates R¼ðR1;1;…;RK;NK

Þ,
and the photon coordinates q ¼ ðq1;…; qN Þ, respectively.
The Hamiltonian of the full problem is given by

ĤðtÞ ¼ Ĥ0 þ ĤextðtÞ, where Ĥ0 describes the internal
Hamiltonian of the different subsystems and their inter-
actions, and ĤextðtÞ allows us to control the entire system
using external classical variables. Let us first specify

ĤextðtÞ ¼
Z

drvextðr; tÞn̂ðrÞ þ
XK
I¼1

FðIÞ
extðtÞ ·RI

þ
XN
α¼1

jðαÞext ðtÞ
ωα

q̂α: ð2Þ

Hereby, we have defined the external potential vext that
couples to the electron density

nðr; tÞ ¼ hΨðtÞj
Xne
i¼1

δðr − riÞjΨðtÞi; ð3Þ

where the many-body wave function ΨðtÞ is the solution to
Eq. (1). The classical force FðIÞ

extðtÞ couples to

RIðtÞ ¼ hΨðtÞj
XNI

β¼1

RI;βjΨðtÞi: ð4Þ

For every species in the system, RI corresponds to the
center-of-mass motion of that species. If the species contains
more than a single nucleus, we find a system of indistin-
guishable particles where the individualRI;β cannot be told
apart and only the center-of-mass motion is measurable [34].

Finally, the classical time derivative of a current jðαÞext ðtÞ
couples to the photon displacement coordinate

qαðtÞ ¼ hΨðtÞjq̂αjΨðtÞi; ð5Þ

which is connected to the mode-resolved physical observ-
ables of the field, i.e., the electric displacement field
D̂αðxÞ ¼

ffiffiffiffiffiffi
4π

p
ωαλαðxÞq̂α. For the following discussion,

we assume the internal Hamiltonian Ĥ0 as

Ĥ0 ¼
Xne
i¼1

−
∇⃗2

i

2
þ
X
i>j

1

jri − rjj
þ Ĥp

þ
XK
I¼1

XNI

β¼1

−
∇⃗2

I;β

2MI
þ V̂ðr;RÞ; ð6Þ

where the first line describes the electronic and photonic
Hamiltonian, and the second line describes the nuclear
Hamiltonian including V̂ that contains all electron-nuclear

and nuclear-nuclear interactions. We will for now not
specify V̂, but only specify it in the actual application.
We proceed by defining the photonic Hamiltonian as

Ĥp ¼
XN
α¼1

1

2

�
p̂2
α þ ω2

α

�
q̂α þ

λα
ωα

· μ̂

�
2
�
; ð7Þ

with the total dipole moment of the system μ̂ ¼P
K
I¼1 ZIRI −

Pne
i¼1 ri. We now demonstrate that QEDFT

can be extended to include nuclear systems using an
extension of the Runge-Gross theorem to arbitrary multi-
component systems [35] that has been applied to electron
and nuclei coupled systems [34].
Every density-functional theory is based on a one-to-one

correspondence between internal variables and external
variables. Both directly follow from the external
Hamiltonian given by Eq. (2). Therefore, the main formal
result of this work can be illustrated by the following
one-to-one correspondence that holds for a given initial
state Ψ0:

ðn;RI; qαÞ↔
1∶1

ðvext;FðIÞ
ext; j

ðαÞ
ext Þ: ð8Þ

Although the previously introduced Eqs. (1)–(7) define the
mapping ðvext;FðIÞ

ext; j
ðαÞ
ext Þ → ðn;RI; qαÞ, the inverse map-

ping may not exist in general.
To show Eq. (8), we introduce the equations of motion

(EOM) for the internal variables in Eq. (8). We start by
discussing the EOM for the photon coordinate qαðtÞ that is
given by [16]

q̈αðtÞ þ ω2
αqαðtÞ þ ωαλα · μðtÞ ¼ −jðαÞext ðtÞ=ωα: ð9Þ

This equation is a wave equation and identical to Maxwell’s
equations in the length gauge with the external source term

−jðαÞext ðtÞ=ωα. Next, we look at the K EOM for the nuclei
coordinates RI . We find

MIR̈IðtÞ þ
XNI

β¼1

XN
α¼1

ZIωαλα
�
qαðtÞ þ

λα
ωα

· μðtÞ
�

þ
XNI

β¼1

FðI;βÞ
str ðtÞ ¼ −

XNI

β¼1

FðIÞ
extðtÞ; ð10Þ

with the nuclear stress force FðI;βÞ
str ðtÞ¼hΨðtÞj∇⃗I;βV̂ðr;RÞ×

jΨðtÞi that is by construction identical for each particle β.
The EOM for the electron density nðr; tÞ is given by the

following Sturm-Liouville problem:
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n̈ðr; tÞ þ ∇⃗ · Fstrðr; tÞ þ
XN
α¼1

∇⃗ ·Fαðr; tÞ þ ∇⃗ · FNðr; tÞ

¼ ∇⃗ · ½nðr; tÞ∇⃗vextðr; tÞ�; ð11Þ

which contains force densities Fstr=α=Nðr; tÞ originated by
the kinetic energy, electron-electron, electron-photon, elec-
tron-nuclear interaction, respectively, and are given by

Fstrðr; tÞ ¼ ihΨðtÞj½T̂ðrÞ þ Ŵðr; r0Þ; ĵpðrÞ�jΨðtÞi;
FNðr; tÞ ¼ ihΨðtÞj½V̂ðr;RÞ; ĵpðrÞ�jΨðtÞi;
Fαðr; tÞ ¼ λαhΨðtÞjn̂ðrÞðλα · μ̂þ ωαq̂αÞjΨðtÞi;

with the paramagnetic current operator ĵpðrÞ [36]. T̂ and Ŵ
correspond to the first and second terms of Eq. (6). These
coupled Eqs. (9)–(11) and the initial values nðr; t0Þ,
_nðr; t0Þ, RIðt0Þ, _RIðt0Þ, qαðt0Þ, and _qαðt0Þ represent an
exact reformulation of the Schrödinger equation of Eq. (1)
and therefore completely define the internal variables of
Eq. (8). The uniqueness of the mapping defined in Eq. (8)
can be proven under the usual TDDFT assumption of t
analyticity such that a Taylor expansion around the initial
time t0 is possible [37]. Then, we can follow closely the
original TDDFT proof [40] with extensions to electron-
nuclear systems [34] and QEDFT [14,15]. We show that for
given initial state Ψ0, two different sets of external

variables, i.e., ðvext;FðIÞ
ext; j

ðαÞ
ext Þ and ðv0ext;FðIÞ0

ext ; j
ðαÞ0
ext Þ will

always lead to two different sets of internal variables
ðn;RI; qαÞ, and ðn0;R0

I; q
0
αÞ. First, we perform a Taylor

expansion of vextðr; tÞ, FðIÞ
extðtÞ, and jðαÞext ðtÞ around initial

time t0 to obtain the Taylor coefficients vðkÞextðr; t0Þ,
FðI;kÞ
ext ðt0Þ, and jðα;kÞext ðt0Þ. Second, we then insert this

expansion into Eqs. (9)–(11) to obtain the Taylor coef-

ficients of ðn;RI; qαÞ in terms of vðkÞextðr; t0Þ, FðI;kÞ
ext ðt0Þ, and

jðα;kÞext ðt0Þ and accordingly for the second set ðn0;R0
I; q

0
αÞ.

Third, assuming a minimum order of k ¼ kmin for which
the difference of the external set does not vanish [41],
we find a nonvanishing difference of ðn;RI; qαÞ and
ðn0;R0

I; q
0
αÞ for kmin þ 2. As a consequence, ðn;RI; qαÞ

and ðn0;R0
I; q

0
αÞ will be different at t0 þ δt [42]. Therefore,

two different sets of external variables will always lead to
two different sets of internal variables, thus proving the
mapping outlined in Eq. (8) for given initial state Ψ0 [43].
To solve the coupled Eqs. (9)–(11) in practice, we need

explicit expressions in terms of n, RI, qα for the nuclear

force FðI;βÞ
str and the electronic force densities Fstr, FN , Fα.

To approximate these quantities, we use a Kohn-Sham
scheme, which is very successful in electronic-structure
calculations (see, e.g., Refs. [34,44]). In total, we find
nþN þNI×K Kohn-Sham equations that read as follows:

i
∂
∂tφiðr; tÞ ¼

�
−
∇⃗2

i

2
þ vsðr; tÞ

�
φiðr; tÞ; ð12Þ

MIQ̈I;βðtÞ ¼ −FðI;βÞ
s ðtÞ; ð13Þ

q̈αðtÞ þ ω2
αqαðtÞ ¼ −jðαÞs ðtÞ=ωα; ð14Þ

where we have to choose the same initial conditions,
i.e., nðr; t0Þ ¼

Pne
i¼1 φ

�
i ðr; t0Þφiðr; t0Þ, _nðr; t0Þ, RIðt0Þ ¼PNI

β¼1 QI;βðt0Þ, _RIðt0Þ, and qαðt0Þ, _qαðt0Þ, as in the
physical system. For the photons subsystem, we find

jðαÞs ðtÞ ¼ ω2
αλα · μðtÞ þ jðαÞext ðtÞ; ð15Þ

where all terms are explicitly known.We depict a schematic
illustration of the proposed scheme in Fig. S1 of the
Supplemental Material [45].
In Eq. (13), we introduced Kohn-Sham trajectories QI;β

for every single nucleus in the system. However, if we have
indistinguishable particles, only the total trajectory QI of
that species is observable. In this way, the nuclear force

FðIÞ
s ðtÞ is defined such that the sum of all Kohn-Sham

trajectoriesQI;β reproduces the exact total trajectory of that

species, i.e., RIðtÞ ¼
PNI

β¼1 QI;βðtÞ. In this way, we define

FðI;βÞ
s ðtÞ ¼

XN
α¼1

ZIωαλα
�
qαðtÞ þ

λα
ωα

· μðtÞ
�

þ FðI;βÞ
Mxc ðtÞ þ FðIÞ

extðtÞ; ð16Þ

where the sum of FðI;βÞ
Mxc ðtÞ is defined as

PNI
β¼1 F

ðI;βÞ
Mxc ðtÞ ¼PNI

β¼1 F
ðI;βÞ
str ðtÞ and describes the mean-field exchange-

correlation (Mxc) contribution [49]. For the electronic
Kohn-Sham system, we define the following Kohn-Sham
potentials:

vsðr; tÞ ¼ vextðr; tÞ þ vMxcðr; tÞ; ð17Þ

with the Mxc potential

vMxcðr; tÞ ¼ vHxcðr; tÞ þ
XN
α¼1

vðαÞMxcðr; tÞ þ vðNÞ
Mxcðr; tÞ;

where these potentials are exactly defined in terms of
Sturm-Liouville equations

∇⃗ · ½nðr; tÞ∇⃗vHxcðr; tÞ� ¼ ∇⃗ · ½FðsÞ
str ðr; tÞ − Fstrðr; tÞ�; ð18Þ

∇⃗ · ½nðr; tÞ∇⃗vðαÞMxcðr; tÞ� ¼ ∇⃗ · Fαðr; tÞ; ð19Þ

∇⃗ · ½nðr; tÞ∇⃗vðNÞ
Mxcðr; tÞ� ¼ ∇⃗ · FNðr; tÞ: ð20Þ
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Over the last decades, the electronic-structure commu-
nity has developed a large selection of possible approx-
imations to the exchange-correlation (xc) potential [50]. In
contrast, the nascent field of QEDFT has not yet seen the
same development of approximations, so far only the one-
photon optimized-effective potential (OEP) has been
successfully used [17,18]. Other possibilities are a para-
metrization along the lines of the local-density approxi-
mation (LDA) [51] in TDDFT. As being closely linked to
QEDFT, the present formalism also allows us to connect to
the OEP [52] route that seems promising in the limit of
weak electron-nuclear correlations.
Next, we specify the electron-nuclear potential V̂ in

Eq. (6) as [34]

V̂ðr;RÞ ¼ 1

2

XK
I¼1

XNI

β¼1

XK
J¼1

XNJ

γ¼1
ðJγ≠IβÞ

ZIZJ

jRI;β −RJ;γj

−
Xne
i¼1

XK
I¼1

XNI

β¼1

ZI

jri −RI;βj
; ð21Þ

where the first line describes the nuclear-nuclear interac-
tion, whereas the second line describes the electron-nuclear
interaction. For systems, where the overlap of nuclear wave
functions remains small, such as molecular vibrations, we
use the following approximation [34] which can be used in
Eq. (13):

FðI;βÞ
M ðtÞ ¼

XK
J¼1

XNJ

γ¼1
ðJγ≠IβÞ

ZIZJðQJ;γ −QI;βÞ
jQI;β −QJ;γj3

−
Z

dr
ZInðr; tÞðr −QI;βÞ

jr −QI;βj3
: ð22Þ

This force depends explicitly on the individual nuclear
trajectoryQI;β and therefore is similar to the self-interaction
correction (SIC) of DFT [34]. Using this equation, we
recover the Ehrenfest scheme [53], i.e., a mixed quantum-
classical scheme that treats the electrons quantum mechan-
ically coupled to classical nuclei. Analogously, the elec-
tron-nuclear potential follows as

vðNÞ
M ðr; tÞ ¼ −

XK
I¼1

XNI

β¼1

ZI

jr −QI;βðtÞj
: ð23Þ

We now apply the presented formalism to vibrational
strong coupling of light to a molecular system (CO2

molecule) [45]. We find for CO2 three infrared (IR)-active
vibrational excitations, which are shown in Fig. 1 in
black, one at 2430 cm−1 and the second one with a
twofold degeneracy at 654 cm−1 (experimental results are
2350 cm−1 and 667.5 cm−1 [54], respectively). To obtain the
infrared spectra, we initially excite the three vibrational

modes such that the carbon atom is displaced by 0.01 Å in all
three spatial directions and record the time evolution of the
total dipole moment μðtÞ for 5 ps. The Fourier transform of
the dipole moment yields then the infrared spectrum [53]. In
Fig. 1, we also depict for all IR active modes their normal
mode oscillation. If the molecule is strongly coupled to a
cavity mode, we find Rabi splitting in the infrared spectra
emerging. To simulate vibrational strong coupling, we
choose the cavity frequency ωα ¼ 2430 cm−1 in resonance
to the vibrational excitation at 2430 cm−1 with polarization
in x direction. By varying the matter-photon coupling
parameter λα ¼ jλαj, we can tune the system from the weak
to the strong coupling limit. In Fig. 1, we show in blue the
spectra for λα ¼ ð0.02; 0.05; 0.1Þ and find the Rabi splitting
occurring with increasing splitting for stronger λα. Next, to
analyze the dynamics of the system under vibrational strong
light-matter coupling in more detail, we initially displace the
carbon molecule by 0.01 Å to specifically excite the
2430 cm−1 vibration. In Fig. 2(a), we show the time-
dependent dipole moment of the system under that initial
excitation for up to 600 fs without matter-photon coupling.
The system oscillates very regularly with a frequency of
2430 cm−1. If we choose λα ¼ 0.05, we find an additional
frequency occurring as an envelope that corresponds to the
Rabi splitting as shown in Fig. 2(b). In Fig. 2(c), we show a
new observable that is now possible to calculate with this
novel formalism. We depict the time evolution of the photon
displacement coordinate and find additionally to the regular
oscillation an envelope given by the Rabi splitting. In the last
example, we study in this Letter, we initialize the three nuclei
with random velocities drawn from a Maxwell-Boltzmann
distribution corresponding to T ¼ 100 K. The infrared
spectrum of this run depicted in Fig. 3 shows not the same
clean signature of the Rabi splitting as in Figs. 1 and 2 but

FIG. 1. Infrared spectra in vibrational strong coupling for CO2.
Black spectrum refers to the spectrum outside the cavity. We
explicitly depict the two infrared-active vibrational modes of the
CO2 molecule. Blue spectra correspond to the electron-nuclear
spectrum. Importantly, we capture the Rabi splitting between the
lower and upper polariton branches.
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rather a broadband with many peaks around 2430 cm−1,
although the cavity mode is in resonance to that frequency.
Because of the initial random velocities, the molecule is
spinning during the simulation time and thus the effective
interaction strength λα;effðtÞ ¼ eα · μðtÞ changes in time. In
the center of Fig. 3, we show the expectation value of qαðtÞ.
Although we also find an envelope that is a fingerprint of
Rabi oscillations, in contrast toFig. 2,wedonot find a regular
envelope function. This can be understood by looking at the
atoms coordinates during the run as plotted in the bottom of
Fig. 3 for t ¼ ð0; 1205; 4000Þ fs (and as a movie in the
Supplemental Material [45]). Because the molecule spins
around its center of mass, we find that λα;effðtÞ ∈ ½0; 0.05�.
This directly translates into the spectra that exhibits a
broadband of peaks at 2430 cm−1.

In our work, we have demonstrated a new density-
functional theory-based approach to treat the correlated
electron-nuclear-photon problem. The Runge-Gross proof
of QEDFT has been extended to the realm of nuclear
motion, and we have applied this new theoretical method to
analyze vibrational strong coupling of high relevance to
experimental work in this field. Our calculations are the
first ab initio calculations of vibrational strong coupling in
cavities with observables that quantitatively connect with
the new fields of polaritonic chemistry [55] and nano-
plasmonics [1,56] that are pushing the envelope in strong
light-matter interactions. Future directions include the
ab initio study of chemical reactions using quantum
transition state theory [57] within the framework of
polaritonic chemistry [55] that have recently been demon-
strated experimentally [6] and are now within computa-
tional reach to study excited-state phenomena [58] of
vibrationally strongly coupled cavity systems within a
linear-response formalism and the study of the rotational-
vibrational sidebands under strong light-matter coupling.
We envision using this understanding of quantum-cavity
controlled vibrational strong coupling as a testbed to
develop a general methodology for optical control of
chemical dynamics via strong light-matter coupling to alter
the fundamental pathways of molecular species, and by
accessing matter-photon correlations, creating a new
method of quantum-correlated spectroscopy.

We thank Nick Rivera and Michael Ruggenthaler for
fruitful discussions, and George Varnavides for graphical
support. We acknowledge support from the STC Center for
IntegratedQuantumMaterialsNSFGrantNo.DMR-1231319
and from the Harvard John A. Paulson School of Engineering
and Applied Sciences. J. F. acknowledges financial support
from the Deutsche Forschungsgemeinschaft under Contract
No. FL 997/1-1.

*flick@seas.harvard.edu
†prineha@seas.harvard.edu

[1] F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y.
Zhang, A. Demetriadou, C. Carnegie, H. Ohadi, B. de Nijs,
R. Esteban, J. Aizpurua, and J. J. Baumberg, Science 354,
726 (2016).

[2] J. George, T. Chervy, A. Shalabney, E. Devaux, H. Hiura, C.
Genet, and T.W. Ebbesen, Phys. Rev. Lett. 117, 153601
(2016).

[3] H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak,
Phys. Rev. Lett. 118, 126802 (2017).

[4] A. Shalabney, J. George, H. Hiura, J. A. Hutchison, C.
Genet, P. Hellwig, and T.W. Ebbesen, Angew. Chem. 127,
8082 (2015).

[5] A. Canaguier-Durand, E. Devaux, J. George, Y. Pang, J. A.
Hutchison, T. Schwartz, C. Genet, N. Wilhelms, J.-M. Lehn,
and T.W. Ebbesen, Angew. Chem. 125, 10727 (2013).

[6] A. Thomas, J. George, A. Shalabney, M. Dryzhakov,
S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux,

(a)

(b)

(c)

FIG. 2. Vibrational excitation at 2430 cm−1. Initial displace-
ment of the C atom of 0.01 Å, (a) dipole moment CO2 outside the
cavity, (b) dipole moment CO2 under strong light-matter coupling
for λα ¼ 0.05, (c) the photon displacement coordinate qαðtÞ as
defined in Eq. (5) for λα ¼ 0.05.

FIG. 3. Spinning molecule. From top to bottom: infrared
spectrum after 5 ps for a CO2 molecule under strong light-matter
coupling with λα ¼ 0.05. Center: time-evolution of the expect-
ation value of qαðtÞ. Bottom: snapshots of the nuclear positions of
the spinning molecule for t ¼ ð0; 1205; 4000Þ fs. The blue area
indicates the polarization direction of the photon mode.

PHYSICAL REVIEW LETTERS 121, 113002 (2018)

113002-5

https://doi.org/10.1126/science.aah5243
https://doi.org/10.1126/science.aah5243
https://doi.org/10.1103/PhysRevLett.117.153601
https://doi.org/10.1103/PhysRevLett.117.153601
https://doi.org/10.1103/PhysRevLett.118.126802
https://doi.org/10.1002/ange.201502979
https://doi.org/10.1002/ange.201502979
https://doi.org/10.1002/ange.201301861


C. Genet, J. A. Hutchison, and T.W. Ebbesen, Angew.
Chem., Int. Ed. Engl. 55, 11462 (2016).

[7] F. Herrera and F. C. Spano, Phys. Rev. Lett. 116, 238301
(2016).

[8] M. A. Zeb, P. G. Kirton, and J. Keeling, ACS Photonics 5,
249 (2018).

[9] J. Feist, J. Galego, and F. J. Garcia-Vidal, ACS Photonics 5,
205 (2018).

[10] J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, Proc.
Natl. Acad. Sci. U.S.A. 114, 3026 (2017).

[11] M. Ruggenthaler, N. Tancogne-Dejean, J. Flick, H. Appel,
and A. Rubio, Nat. Rev. Chem. 2, 0118 (2018).

[12] L. A. Martínez-Martínez, R. F. Ribeiro, J. Campos-
González-Angulo, and J. Yuen-Zhou, ACS Photonics 5,
167 (2018).

[13] M. Ruggenthaler, F. Mackenroth, and D. Bauer, Phys. Rev.
A 84, 042107 (2011).

[14] I. V. Tokatly, Phys. Rev. Lett. 110, 233001 (2013).
[15] M. Ruggenthaler, J. Flick, C. Pellegrini, H. Appel, I. V.

Tokatly, and A. Rubio, Phys. Rev. A 90, 012508 (2014).
[16] J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, Proc.

Natl. Acad. Sci. U.S.A. 112, 15285 (2015).
[17] C. Pellegrini, J. Flick, I. V. Tokatly, H. Appel, and A. Rubio,

Phys. Rev. Lett. 115, 093001 (2015).
[18] J. Flick, C. Schäfer, M. Ruggenthaler, H. Appel, and A.

Rubio, ACS Photonics 5, 992 (2018).
[19] J. Flick, H. Appel, M. Ruggenthaler, and A. Rubio, J. Chem.

Theory Comput. 13, 1616 (2017).
[20] J. F. Capitani, R. F. Nalewajski, and R. G. Parr, J. Chem.

Phys. 76, 568 (1982).
[21] T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984

(2001).
[22] T. Kreibich, R. van Leeuwen, and E. K. U. Gross, Phys. Rev.

A 78, 022501 (2008).
[23] A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, Phys.

Rev. Lett. 101, 153001 (2008).
[24] A. Sirjoosingh and S. Hammes-Schiffer, J. Phys. Chem. A

115, 2367 (2011).
[25] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,

Rev. Mod. Phys. 73, 515 (2001).
[26] R. Requist and E. K. U. Gross, Phys. Rev. Lett. 117, 193001

(2016).
[27] F. Giustino, Rev. Mod. Phys. 89, 015003 (2017).
[28] Other possible approaches include exact factorization

[29–31], path integrals [32], and perturbative theory [25,27].
[29] A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett.

105, 123002 (2010).
[30] S. K. Min, F. Agostini, I. Tavernelli, and E. K. U. Gross,

J. Phys. Chem. Lett. 8, 3048 (2017).
[31] N. M. Hoffmann, H. Appel, A. Rubio, and N. T. Maitra,

Eur. Phys. J. B 91, 180 (2018).
[32] T. E. Markland and M. Ceriotti, Nat. Rev. Chem. 2, 0109

(2018).
[33] D. Craig and T. Thirunamachandran, Molecular Quantum

Electrodynamics: An Introduction to Radiation-Molecule

Interactions, Dover Books on Chemistry Series (Dover
Publications, Mineola, 1998).

[34] E. K. U. Gross, J. F. Dobson, and M. Petersilka, Density
functional theory of time-dependent phenomena,
Density Functional Theory II: Relativistic and Time
Dependent Extensions, edited by R. F. Nalewajski
(Springer Berlin Heidelberg, Berlin, Heidelberg, 1996),
pp. 81–172.

[35] T.-C. Li and P.-q. Tong, Phys. Rev. A 34, 529 (1986).
[36] M. Ruggenthaler and R. van Leeuwen, Europhys. Lett. 95,

13001 (2011).
[37] More general proofs [38] may be formulated along the lines

of Refs. [36,39].
[38] M. Ruggenthaler, M. Penz, and R. van Leeuwen, J. Phys.

Condens. Matter 27, 203202 (2015).
[39] I. V. Tokatly, Phys. Rev. B 83, 035127 (2011).
[40] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997

(1984).
[41] kmin exists, because the potentials are different by

construction.
[42] Provided the initial density nðr; t0Þ is reasonably well

behaved [38,40], the last step can be shown by reductio
ad absurdum [38,40].

[43] Up to a time-dependent scalar function cðtÞ in vextðr; tÞ.
[44] W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
[45] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.121.113002 for a sche-
matic of the formalism, details on the numerical simulations
and details on the timescales in the system, which includes
Refs. [46–48].

[46] A. Andrade et al., Phys. Chem. Chem. Phys. 17, 31371
(2015).

[47] J. L. Alonso, X. Andrade, P. Echenique, F. Falceto, D.
Prada-Gracia, and A. Rubio, Phys. Rev. Lett. 101, 096403
(2008).

[48] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993
(1991).

[49] For Fröhlich coupling [27], we find a vanishing xc
contribution.

[50] M. A. Marques, M. J. Oliveira, and T. Burnus, Comput.
Phys. Commun. 183, 2272 (2012).

[51] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[52] S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3

(2008).
[53] X. Andrade, A. Castro, D. Zueco, J. L. Alonso, P.

Echenique, F. Falceto, and Á. Rubio, J. Chem. Theory
Comput. 5, 728 (2009).

[54] P. E. Martin and E. F. Barker, Phys. Rev. 41, 291 (1932).
[55] T. W. Ebbesen, Acc. Chem. Res. 49, 2403 (2016).
[56] J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang,

and J. J. Baumberg, Nano Lett. 17, 2568 (2017).
[57] S. Shin and H. Metiu, J. Chem. Phys. 102, 9285

(1995).
[58] J. Flick, D. M. Welakuh, M. Ruggenthaler, H. Appel, and A.

Rubio, arXiv:1803.02519.

PHYSICAL REVIEW LETTERS 121, 113002 (2018)

113002-6

https://doi.org/10.1002/anie.201605504
https://doi.org/10.1002/anie.201605504
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1021/acsphotonics.7b00916
https://doi.org/10.1021/acsphotonics.7b00916
https://doi.org/10.1021/acsphotonics.7b00680
https://doi.org/10.1021/acsphotonics.7b00680
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1038/s41570-018-0118
https://doi.org/10.1021/acsphotonics.7b00610
https://doi.org/10.1021/acsphotonics.7b00610
https://doi.org/10.1103/PhysRevA.84.042107
https://doi.org/10.1103/PhysRevA.84.042107
https://doi.org/10.1103/PhysRevLett.110.233001
https://doi.org/10.1103/PhysRevA.90.012508
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1103/PhysRevLett.115.093001
https://doi.org/10.1021/acsphotonics.7b01279
https://doi.org/10.1021/acs.jctc.6b01126
https://doi.org/10.1021/acs.jctc.6b01126
https://doi.org/10.1063/1.442703
https://doi.org/10.1063/1.442703
https://doi.org/10.1103/PhysRevLett.86.2984
https://doi.org/10.1103/PhysRevLett.86.2984
https://doi.org/10.1103/PhysRevA.78.022501
https://doi.org/10.1103/PhysRevA.78.022501
https://doi.org/10.1103/PhysRevLett.101.153001
https://doi.org/10.1103/PhysRevLett.101.153001
https://doi.org/10.1021/jp111210c
https://doi.org/10.1021/jp111210c
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRevLett.117.193001
https://doi.org/10.1103/PhysRevLett.117.193001
https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1021/acs.jpclett.7b01249
https://doi.org/10.1140/epjb/e2018-90177-6
https://doi.org/10.1038/s41570-017-0109
https://doi.org/10.1038/s41570-017-0109
https://doi.org/10.1103/PhysRevA.34.529
https://doi.org/10.1209/0295-5075/95/13001
https://doi.org/10.1209/0295-5075/95/13001
https://doi.org/10.1088/0953-8984/27/20/203202
https://doi.org/10.1088/0953-8984/27/20/203202
https://doi.org/10.1103/PhysRevB.83.035127
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/RevModPhys.71.1253
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.113002
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.113002
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.113002
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.113002
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.113002
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.113002
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.113002
https://doi.org/10.1039/C5CP00351B
https://doi.org/10.1039/C5CP00351B
https://doi.org/10.1103/PhysRevLett.101.096403
https://doi.org/10.1103/PhysRevLett.101.096403
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1016/j.cpc.2012.05.007
https://doi.org/10.1016/j.cpc.2012.05.007
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/RevModPhys.80.3
https://doi.org/10.1103/RevModPhys.80.3
https://doi.org/10.1021/ct800518j
https://doi.org/10.1021/ct800518j
https://doi.org/10.1103/PhysRev.41.291
https://doi.org/10.1021/acs.accounts.6b00295
https://doi.org/10.1021/acs.nanolett.7b00332
https://doi.org/10.1063/1.468795
https://doi.org/10.1063/1.468795
http://arXiv.org/abs/1803.02519

