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We use a quantum sensor based on thermal Rydberg atoms to receive data encoded in electromagnetic
fields in the extreme electrically small regime, with a sensing volume over 107 times smaller than the cube
of the electric field wavelength. We introduce the standard quantum limit for data capacity, and
experimentally observe quantum-limited data reception for bandwidths from 10 kHz up to 30 MHz. In
doing this, we provide a useful alternative to classical communication antennas, which become increasingly
ineffective when the size of the antenna is significantly smaller than the wavelength of the electromagnetic
field.
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Antennas do not obey Moore’s law. As cutting-edge
devices become smaller and smaller, the communication
transmitter and receiver antennas present significant size
constraints [1,2]. This is because fundamental principles
limit the performance of a traditional antenna that is
significantly smaller than the wavelength of the electromag-
netic (EM) field being detected, λ. Specifically, a lossless,
resonant, electrically small antenna of characteristic radius a
is guaranteed to have a quality factorQ greater than the Chu
limit,QChu ¼ λ3=ð2πaÞ3, that limits the operation bandwidth
to BWChu ≲ f0=QChu for carrier frequency f0.
This limit, pioneered by Chu, Wheeler, Harrington,

McLean, and others, influences the design of a wide range
of communication technologies using carrier frequencies
ranging from dc up to GHz frequencies [2–6]. Discovery of
modest optimizations within the Chu limit constraint is still
an active area of research [7,8], as well as exploration into
alternative communications technologies (e.g., based on
acoustics or active circuits) that are not subject to the Chu
limit [9,10]. Here we introduce another alternative path:
using a quantum sensor operating at the standard quantum
limit (SQL) to receive classical communications.
In this Letter, we first introduce the SQL for data

capacity (or channel capacity) CSQL of a receiver based
on a quantum sensor and perform a basic comparison with
the Chu limit. For our experimental parameters, the
quantum system nominally gives improvements of over
4 orders of magnitude over the Chu limit. Second, we
experimentally demonstrate quantum-limited reception of
signals using thermal Rydberg atoms. By achieving pho-
ton-shot-noise-limited readout and increasing the operation
bandwidth beyond the decoherence rate, we observe a
transition from the steady-state (SS) electromagnetically
induced transparency (EIT) regime to quantum-limited
scaling corresponding to operation at the SQL for 60
effective atoms [11].

A number of recent experiments have used thermal
Rydberg atoms for state-of-the-art sensors of electric fields
[12–19]. Most of these experiments were primarily focused
on sensitivity and operated at bandwidths lower than the
decoherence rates set by EIT power broadening, transit
broadening, and Doppler broadening, precluding operation
at the SQL. We highlight that for communication purposes,
on the other hand, high bandwidth is often the goal, and the
fundamental quantum limit can be reached. Our group and
others have recently introduced radio-frequency (rf) com-
munications receivers using atomic sensors [20–23], but
have not explicitly reached the SQL. Previous receivers
based on Rydberg atoms [20–22] were also not deeply in
the electrically small regime, where significant advantages
over traditional receiver antennas are apparent.
Atomic sensors are not antennas, at least in the traditional

sense. Traditional antennas are passive devices designed to
efficiently convert free-space EM waves into signals on a
transmission line. On the other hand, atomic electric field
sensors often do not absorb net energy from the field, but
rather use the atoms and additional laser beams to perform
nondestructive sensing [24]. This sensing regime breaks a
key assumption behind the Chu limit—namely, that of
passive, destructive sensing—allowing a quantum sensor
using a single atom tooperate at an arbitrarily highbandwidth.
Consider the case where the goal of classical communi-

cation is to detect a high rate of data, given by data capacityC
measured in bits per second, encoded here in the amplitude
modulation of an electric field with a carrier frequency f0.
The achievable C is given by the Shannon-Hartley theorem
[25], C ¼ fd log2ð1þ SNR2Þ, where fd is the rate that data
symbols are sent, and SNR is the signal-to-noise ratio, in
standard deviation, for detecting the electric field in a
measurement window of length td ¼ 1=fd.
Any quantum sensor based on two-level systems

observes the applied EM field as an evolution of a quantum
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phase ϕ characterizing a superposition state jψi ¼ ð1= ffiffiffi
2

p Þ
ðjgi þ eiϕjeiÞ with quantum states jgi and jei. In the case
of low-frequency sensing, exclusively studied here, an
applied electric field E changes the atomic transition fre-
quency by an amount δω ¼ 1

2
αE2=ℏ. In a sensing time td, δω

accumulates into the evolved quantum phase ϕ ¼ δωtd.
When operating with N independent atoms, the individual
collapse of atomic wave functions into either jei or jgi limits
the resolution (given by standard deviation, denoted byΔ) of
a measurement of ϕ to the SQL, ΔϕSQL ¼ 1=

ffiffiffiffi
N

p
.

Figure 1(a) shows how the SQL limits communication.
For communication, the continuous observable ϕ can be
broken into a number of discrete binary symbols (e.g.,
2 bits, 00 to 11, delineated by color in the figure). The
symbols may be transmitted, as is done here, by changing
the amplitude of a static or oscillatory electric field with
nominal amplitude E0. Symbols are received at bandwidth
fd by allowing ϕ to linearly evolve into a specific binary
state in time td. In the optimum case, readout is much faster
than td, and quantum noise is observed as an instantaneous

uncertainty to each readout of ϕ [shown as red uncertainty
distributions in Fig. 1(a)].
Combining the Shannon-Hartley theorem and the SQL,

we derive the quantum-limited data capacity, for N inde-
pendent atoms, to be

CSQL ¼ fdlog2

�
1þ δω2N

f2d

�
: ð1Þ

CSQL increases with fd until the argument inside the
logarithm becomes approximately 4.92. This occurs at
an optimal (denoted by a star) data transmission rate f�d ¼
0.505ðδω ffiffiffiffi

N
p Þ. The corresponding optimal quantum-limited

data capacity is C�
SQL ¼ 1.16ðδω ffiffiffiffi

N
p Þ. To achieve a larger

SNR or data capacity, one must increase the atom number
or probe an atomic state with a larger polarizability. One
potential avenue is to use Rydberg states with higher
principle quantum number n, where the polarizability nomi-
nally scales as n7 [26].
In Fig. 1(b), we present a basic comparison between

CSQL and the classical data capacity bound arising from the
Chu limit. To determine the Chu-limited data capacity, one
needs to know both the bandwidth and the SNR of the
classical antenna. Here we consider an efficient classical
antenna with maximum Chu-limited data rate fd ∼ BWChu,
whose enclosing sphere [3] has the same radius a as that
required for our Rb vapor cell (a ¼ 3.75 cm). We consider
the classical antenna to be subjected to 50 Ω Johnson noise
at room temperature, and plot for our experimental electric
field 0.8 V=cm.
The maximum achievable quantum-limited data capacity

of our system Cmax is plotted versus carrier frequency f0 as
a pink line in Fig. 1(b). To obtain Cmax, we choose the
optimum data rate to maximize Eq. (1) at each f0, while
enforcing fd <¼ f0. At f0 ¼ 107 Hz, we reach the opti-
mum data rate fd ¼ f0 ¼ f�d. Subsequent increases in fd
only reduce CSQL, and therefore Cmax becomes flat (equal
to C�

SQL). The experimentally measured maximum capacity
is shown in black points [27]. The measurements used to
obtain these data are described in detail in later sections and
Fig. 3(b).
The quantum sensor outperforms the efficient electrically

small antenna by a factor ofmore than 104 at 10MHz, and the
advantage is evenmore extreme at lower frequencies. For the
a ¼ 3.75 cm antenna considered here, the Chu limit and
SQL cross at f0 ≈ 1.5 × 108 Hz, as the traditional antenna
leaves the extreme electrically small regime. To be clear,
there are othermethods that surpass the nominal Chu-limited
data capacity, such as using inefficient designs [28], active
non-Foster circuit elements [10,29], or non-impedance-
matched antennas (viable when the field wavelength is long
and reflections can be tolerated). It is also important to note
that for many communications applications, external noise
sources—blackbody, cosmic, man-made, and atmospheric

FIG. 1. The quantum limit for data capacity. (a) Data can be
sent, for example, by encoding information in the strength of the
electric field. The quantum sensor detects symbols by measuring
the evolved phase ϕ at the end of each period, therefore inferring
the transmitted symbol (right axis). (b) The Chu limit to data
capacity for an efficient 7 cm classical antenna is shown in green
(see text for details). The maximum standard quantum limit Cmax
for our experimental parameters is shown in pink. The corre-
sponding maximum measured data capacity of our sensor is
shown as black points.
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noise—can dominate the internal receiver noise, be it
quantumor classical.Despite these details that require further
exploration, we expect quantum sensors can provide sig-
nificant benefits in sensitivity and bandwidth for certain
applications.
A simplified version of our experimental setup and level

diagram is shown in Figs. 2(a) and 2(b). Using two parallel
plates separated by 60 mm, we apply a transverse low-
frequency electric field. The 480 nm (blue) beam (tuned to
the 85Rb j5P3=2; F ¼ 4i to j50D5=2i transition) and the
780 nm (red) beam (tuned to the j5S1=2; F ¼ 3i to j5P3=2;
F ¼ 4i transition) counterpropagate to establish nearly
Doppler-free EIT. In the regime of low-frequency E fields,
we detect the Stark shift of the Rydberg state, δω ¼ 1

2
αE2,

where α is the scalar polarizability of the atomic transition,
approximately constant for the low frequencies applied here.
The j50D5=2i Rydberg state splits into three sublevels due to
the tensor component of the polarizability: jmjj ¼ 1=2,
jmjj ¼ 3=2, jmjj ¼ 5=2. We calculate the polarizabilities
of these states to be α ¼ 2πð−36; 42; 212Þ MHz=ðV=cmÞ2,
respectively [30]. In Fig. 2(c), we show a plot of the EIT
transmission profile with no electric field (red circles), and
with an electric field of 0.4 V=cm applied (blue triangles).
The peak splits into the threemj sublevels. To detect electric
fields, we observe the change in transmission of the 780 nm
probe laser through the cell as the EIT resonance frequencies

are changed due to the applied electric field. For high SNR
readout, we overlap the 780 nm probe beam with a strong
heterodyne local oscillator detuned by 78.5MHz. In contrast
to rf systems, optical heterodyne detection allows readout
with zero thermal noise; herewe observe quantum shot noise
to be 6 dB greater than detector noise. More details about the
experimental setup can be found in our previous work [20].
An example trace is shown in Fig. 2(d). At t ¼ 0 s, we

turn on the electric field from zero (on EIT resonance) to
0.8 V=cm. The probe transmission (gray line), normalized
to the total transmission associated with EIT, drops accord-
ingly, corresponding to the Rydberg state shifting off of
two-photon resonance. Over 0.5 ms, however, the trans-
mitted signal relaxes to the original value, indicating a
relaxation to zero of the electric field observed by the
atoms. This effect has been studied in other vapor-cell-
based systems and can be attributed to free charges in the
glass cell shielding the electric field [12,31]. However, for
reasonably high bandwidths of 100 kHz or more, we
observe this relaxation effect to be less significant.
To calculate the data capacity of our receiver, we

measure the SNR for detecting a quantum phase ϕ as a
function of data rate fd. Instead of explicitly operating at
many different frequencies, we apply a step function in the
electric field, as is done in Fig. 2(d) or the inset of Fig. 3(a),
and measure the SNR of detecting the step as a function
of measurement bandwidth. Specifically, for each applied
step in the field, we average the probe transmission signal
in a time window of length td [pink window in inset of
Fig. 3(a)] placed adjacent to the step. The outcome of this
average can be used to determine a sent data symbol
[20,32]. To change the effective bandwidth, we change the
length of the averaging window td ¼ 1=fd. We determine
the SNR from the outcome of 100 independent measure-
ments of the electric field. The resulting SNR for detecting
an electric field as a function of data rate is shown as black
solid data points in Fig. 3(a). By independently calibrating
the photon shot noise (PSN) level, we measure and subtract
out additional 1=f laser noise that contributes at low
frequencies [plotted as open circles in Fig. 3(a)]. For
simplicity we have chosen the electric field strength to
create Stark shifts on the order of the EIT linewidth.
However, using active stabilization of the probe laser to
the EIT feature, the dynamic range can be made much
larger than the linewidth. For strong fields, Rydberg state
mixing must be accounted for [12].
In many quantum sensors, state selective readout means

PSN is uncorrelated with atomic shot noise [33]. In EIT,
on the other hand, scattering of a photon has a one-to-
one correspondence with atom wave function collapse.
Explicitly, the SNR that we observe is determined by the
number of atoms that collapse into the EIT bright state,
absorbing and scattering photons out of the probe beam
during the communication time td. This leads to a quantum-
limited SNR, SNRSQL ¼ δωefftd

ffiffiffiffiffiffiffiffi
QN

p
, where N is the total

FIG. 2. (a) Experimental setup and (b) Level diagram. (c) When
no E field is applied, we observe a single EIT transmission
window (red circles). Low-frequency electric fields cause scalar
and tensor Stark shifts that split the resonance into three peaks
(blue triangles). (d) At t ¼ 0, we apply a square pulse to the
electric field. The probe transmission rapidly follows the applied
field, but then slowly relaxes over 0.5 ms due to free charges in
the glass cell that shield the electric field.
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atom number andQ is the total intrinsic quantum efficiency
that includes path losses, technical noise that partially hides
quantum fluctuations, noninfinite optical depth, as well as
the fundamental 50% efficiency of heterodyne detection.Q
can also be absorbed into an effective atom number
Neff ¼ QN, for which we observe quantum-limited oper-
ation. We also define the effective Stark shift δωeff that
accounts for reductions in the signal due to additional
decoherence, nonoptimal probing, and shielding effects
(with associated signal efficiency Qsig), δωeff ¼ δωQsig.
If the symbol period td is longer than the coherence time

of the dark state in the presence of the electric field, an atom
is likely to scatter many times during a single symbol. In
this steady-state regime, the SNR is SNRSS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nefftd=τ

p
,

where τ is the characteristic time for an atom to transition

from the dark state to the bright state and scatter a photon.
In Fig. 3(a), SNRSS is displayed as a blue dotted line. If
td < τ, atoms collapse, on average, less than once in the
symbol period. In this regime, the SNR can approach the
quantum limit. SNRSQL is plotted as a red dashed line in
Fig. 3(a).
We fit our observed SNR in Fig. 3 to a model combining

the two SNR limits, SNRSQL and SNRSS. Since the applied
Stark shift is larger than the rubidium D2 excited state
lifetime (Γ ¼ 2π × 6 MHz), we set the scattering rate 1=τ
in the model to be the upper bound, Γ=2 [20]. We allow
δωeff and Neff to be fit parameters. The fit is plotted as a
pink line in Fig. 3(a). The fit returns δωeff ¼ 680ð60Þ kHz
andNeff ¼ 63ð7Þ. From this we deduceQsig ≈ 3%. Further,
the measured optical depth and EIT contrast allows us to
approximate the total number of atoms participating in EIT
to be of order 104, which gives the total quantum efficiency
Q of approximately 0.5%. These returned values are in
rough agreement with what we predict from known
inefficiencies. We explicitly observe the transition from
the steady-state PSN regime to the SQL regime at 800 kHz,
a frequency governed by τ. Previous Rydberg electrometry
experiments have focused on lower bandwidth sensing, and
have not explicitly reached the regime of SQL scaling [14].
However, we emphasize that atomic wave function collapse,
resulting in quantum noise in the transmitted light, limits the
SNR at all bandwidths, even in the steady-state regime.
In Fig. 3(b) (inset), we plot the SNR for detecting a

symbol in a bandwidth fd ¼ 0.5 MHz as a function of
the effective atom number Neff. Here we adjust Neff by
changing a static electric field, moving the EIT two-photon
transition off of resonance. Figure 3(b) shows that the SNR,
limited by atomic wave function collapse manifesting as
PSN, indeed scales as

ffiffiffiffiffiffiffiffi
Neff

p
(fit displayed as solid orange

line). This scaling is observed in both the steady-state and
SQL-scaling regimes and can be equivalently viewed as
either a consequence of atomic wave function collapse or
photon shot noise.
In Fig. 3(b), we plot (black points) the data capacity C,

with no noise subtractions, inferred from the measured
SNR and data rate of Fig. 3(a) using the Shannon-Hartley
theorem. CSQL, using δωeff and Neff , is shown as a pink
line. These data and theory are the same as that of Fig. 1(b)
except plotted directly versus fd, leading to a drop in C
when fd > f�d ¼ 3 × 107 Hz. At the optimum data rate we
achieve C�

SQL ¼ 4 × 107 bits/s. We highlight that further
improvements can only be realized by increasing the
effective atom number, the effective polarizability, or by
adding entanglement between the atoms.
More broadly, Fig. 3 associates the performance of

our atomic sensor used for classical data reception to the
foundational quantum principles governing the system.
This is important, for one, because it sets a fundamental
bound—much like the Chu limit for traditional antennas—
on the system’s capabilities based on the basic resources

FIG. 3. Quantum-limited operation. (a) We measure probe
transmission through the cell in bandwidth fd ¼ 1=td by aver-
aging for time td (inset). Directly measured SNR (black points)
and SNRwith technical noise subtracted (open circles) are plotted
versus fd. At high frequencies, we observe the standard-quan-
tum-limited SNR scaling (red dashed line). At lower frequencies,
we observe a steady-state, square-root scaling of SNR (blue dots).
The data are fit to the complete quantum noise model (pink line).
The SNR data (open circles) lie within 2 standard deviations of
the fit over the fitted range of fd ¼ 5 × 104 Hz to fd ¼ 107 Hz.
The larger deviations at low frequencies are due to the cell
shielding effect. (b) The SNR data from (a) are used to plot data
capacity versus fd. The quantum limit, for our fitted effective
atom number and signal size, is shown as a pink line. Inset: We
plot the SNR for receiving symbols in a bandwidth fd ¼
0.5 MHz as a function of the effective atom number. The data
are fit to a square-root scaling.
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used. Second, the ability to relate our receiver’s perfor-
mance to the underlying quantum dynamics also alludes to
the potential for Rydberg atomic sensors to extend com-
munication into the quantum regime. Current work in this
area is ongoing [34–39]; we hope that our results further
inspire quantum communication tools based on Rydberg
vapor-cell platforms.
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