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We set up a rigorous thermodynamic description of reaction-diffusion systems driven out of equilibrium
by time-dependent space-distributed chemostats. Building on the assumption of local equilibrium,
nonequilibrium thermodynamic potentials are constructed exploiting the symmetries of the chemical
network topology. It is shown that the canonical (resp. semigrand canonical) nonequilibrium free energy
works as a Lyapunov function in the relaxation to equilibrium of a closed (resp. open) system, and its
variation provides the minimum amount of work needed to manipulate the species concentrations. The
theory is used to study analytically the Turing pattern formation in a prototypical reaction-diffusion system,
the one-dimensional Brusselator model, and to classify it as a genuine thermodynamic nonequilibrium
phase transition.
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Introduction.—Reaction-diffusion systems (RDSs) are
ubiquitous in nature. When nonlinear feedback effects
within the chemical reactions are locally destabilized by
diffusion, complex spatiotemporal phenomena emerge.
These latter ranging from stationary Turing patterns [1,2]
to traveling waves [3,4] play a critical role in the aggre-
gation and structuring of hard matter [5] as well as living
systems [6]. In biology, striking examples are embryogen-
esis determined by the prepatterning of morphogens [7–9]
and cellular rhythms regulated by calcium waves [10,11].
Nonequilibrium conditions consisting in a continual

influx of chemicals and energy are required to create and
maintain these dissipative structures. Since the original work
of Prigogine and Nicolis [12,13], which made clear how
order can emerge spontaneously at the expense of continu-
ous dissipation, much work has been dedicated to better
understanding the chaotic and nonequilibrium dynamics of
RDSs [14]. Most of it has focused on searching for general
extremum principles, e.g., in selecting the relative stability of
competing patterns [15]. Nevertheless, a complete frame-
work is still lacking that models RDSs as proper thermo-
dynamic systems in contact with nonequilibrium chemical
reservoirs subject to external work and entropy changes.
Such a theory is all the more necessary nowadays, when
promising technological applications, such as biomimetics
[16,17] and chemical computing [18], are envisaged that
deliberately exploit the self-organized structures of RDSs.
In this respect, the work needed to manipulate a Turing
pattern and the efficiency with which information exchanges
through traveling waves can occur are thermodynamic
questions of crucial importance.
In this Letter, we lay the basis to address these questions

by presenting a rigorous thermodynamic theory of RDSs
far from equilibrium. We take the viewpoint of stochastic

thermodynamics [19,20] and carry over its systematic way
to define thermodynamic quantities (such as work and
entropy), anchoring them to the (herein deterministic)
dynamics of the RDSs. Stochastic thermodynamics has
recently emerged as a comprehensive framework for
describing small systems arbitrarily far from equilibrium,
as it allows one to study the efficiency of thermal micro-
engines [21], rationalize the fluctuation theorems [22], and
connect information processing to work [23]. We supple-
ment this well-established approach with a novel yet pivotal
element, which is the inclusion of the conservation laws
[24–26] of the underlying chemical network (CN) for
constructing thermodynamic potentials under general non-
equilibrium conditions. Moreover, viewing the RDS as the
large size limit of stochastically reacting and diffusing
chemicals, we can study Turing patterns as instances of
thermodynamic nonequilibrium phase transitions [27–32].
Theory.—The description of Ref. [33] is extended to

CNs endowed with a spatial structure. We consider a dilute
ideal mixture of chemical species σ that diffuse within a
vessel V ∋ r with impermeable walls and undergo elemen-
tary reactions ρ. The abundance of some species is possibly
controlled by the coupling with external chemostats (if not,
the system is called closed). Hence, the concentration
Zσðr; tÞ of internal and chemostatted species, respectively
denoted x and y follows the reaction-diffusion equations

∂tZσ ¼ −∇ · Jσ þ
X
ρ

Sσ
ρjρ þ Iσ: ð1Þ

Fick’s diffusion currents Jσ ¼ −Dσ∇Zσ are responsible for
the transport of chemicals across space and vanish at the
boundaries of V; the external currents Iσ ≠ 0∀ y describe
the rate at which the controlled species are injected into the
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(open) system by the chemostats; Sσ
ρjρ gives the concen-

tration variation upon reaction ρ. Here, Sσ
ρ ¼ νσ−ρ − νσþρ is

the stoichiometric matrix, i.e., the negative difference
between the number of species σ involved in the forward
(þρ) and backward (−ρ) reaction and jρ ¼ jþρ − j−ρ is the
net reaction current. While the former specifies the CN
topology, the latter determines its kinetics. By virtue
of the mass-action kinetics assumption [34], each reaction
current is proportional to the product of the reacting

species concentrations, j�ρ ¼ k�ρ

Q
σZ

νσ�ρ
σ . For example,

the net current associated with the autocatalytic reaction

2X1 þ X2⇌
k−

kþ
3X1 (the core of the Brusselator model dis-

cussed later) is jρ ¼ kþZ2
X1
ZX2

− k−Z3
X1
, where νX1þρ ¼ 2,

νX2þρ ¼ 1, and νX1
−ρ ¼ 3. Thermodynamic equilibrium char-

acterized by homogeneous concentrations Zeq
σ is reached

when all external and reaction currents vanish identically,
jρ ¼ Iσ ¼ 0. It implies for the rate constants the local
detailed balance condition kþρ=k−ρ ¼

Q
σðZeq

σ ÞSσ
ρ . Such a

relation is taken to be valid irrespective of the system’s
state. The CN instead may be in a global nonequilibrium
state characterized by space-dependent concentrations
Zσðr; tÞ as a result of inhomogeneous initial conditions
or because of nonvanishing external currents Iσ . Yet, we
assume it to be kept by the solvent in local thermal
equilibrium at a given temperature T. Therefore, the species
can be assigned thermodynamic state functions, which have
the known equilibrium form valid for dilute ideal mixtures
but are a function of the nonequilibrium concentrations
Zσðr; tÞ (Ref. [35], Chap. 15).
A central role is played by the nonequilibrium chemical

potential μσðrÞ ≔ μ∘σ þ lnZσðrÞ (given in units of temper-
ature T times the gas constant R, as any other quantity
hereafter). It renders the local detailed balance in the form
kþρ=k−ρ ¼ expð−P

σ S
σ
ρμ

∘
σÞ involving only the difference

between the energy of formation of reactants and products.
Moreover, its variation across space and between species
gives the local diffusion and reaction affinity [34]

FσðrÞ ≔ −∇μσðrÞ; fρðrÞ ≔ −
X
σ

Sσ
ρμσðrÞ; ð2Þ

which are the thermodynamic forces driving the system.
We introduce as nonequilibrium potential the “canonical”

Gibbs free energy of the system G ≔
R
V dr

P
σðμσZσ − ZσÞ

(given up to a constant). It can be expressed in terms of the
equilibrium free energy Geq ¼ GðZeq

σ Þ as

G ¼ Geq þ LðZσkZeq
σ Þ ð3Þ

introducing the relative entropy for non-normalized con-
centration distributions

LðZσkZeq
σ Þ ≔

Z
V
dr

X
σ

�
Zσ ln

Zσ

Zeq
σ
− ðZσ − Zeq

σ Þ
�
: ð4Þ

Akin to the Kullback–Leibler divergence for probability
densities [36], Eq. (4) quantifies the dissimilarity between
two concentrations: Being positive for all Zσ ≠ Zeq

σ , it
implies that G is always larger than its equilibrium
counterpart Geq. Most importantly, it is minimized by
the relaxation dynamics of closed systems. This is shown
by evaluating the time derivative of Eq. (3) with the aid of
Eq. (1) at Iσ ¼ 0 and Eq. (2),

dtL ¼ dtG ¼ − _Σdff − _Σrct ≕ − _Σ ≤ 0; ð5Þ

and recognizing the standard form of the total entropy
production rate (EPR) _Σ split into its diffusion and reaction
parts [34]:

_Σdff ≔
Z
V
dr

X
σ

Jσ · Fσ; _Σrct ≔
Z
V
dr

X
ρ

jρfρ: ð6Þ

The relative entropy (4) possesses some important physical
features. First, in the absence of reactions, it gives the
total entropy produced by the diffusive expansion of
concentrations. For example, consider nA and nB moles
of inert chemicals A and B initially placed in the volume
fractions VA and VB, respectively. They relax to homo-
geneous concentrations with an entropy production −L ¼
nA logVA þ nB logVB that is exactly the entropy of mixing
of the two species [37]. It is remarkable that diffusive
dissipation and mixing entropy are, thus, fully described
in a purely information theoretic fashion, namely, as a
relative entropy between concentrations. Second, the rel-
ative entropy between reacting concentrations Zσðr; tÞ ¼
Z̄σðtÞϕσðr; tÞV and arbitrary reference homogeneous con-
centrations Zh

σ can be split into the relative entropy between
space-averaged concentrations Z̄σðtÞ ¼

R
V drZσðr; tÞ=V

and equilibrium ones Zeq
σ plus the relative entropy of the

normalized local modulations ϕσðrÞ around Z̄σ and the flat
distribution 1=V:

LðZσkZh
σÞ ¼ LðZ̄σkZh

σÞ þ
X
σ

Z̄σLðϕσk1=VÞ: ð7Þ

The positivity of relative entropy implies LðZσkZh
σÞ ≥

LðZ̄σkZh
σÞ; i.e., the free energy of a patterned system is

always larger than its homogeneous counterpart. Third,
different patterns may have the same relative entropy (see
Fig. 1) indicating that morphology and thermodynamics
need not be correlated [38].
The conservation laws of the CN play a central role in

building the nonequilibrium thermodynamics of the sys-
tem, i.e., in the derivation of Eqs. (3) and (4). The left null
vectors of Sσ

ρ, i.e.,
P

σl
λ
σSσ

ρ ¼ 0, define the components
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Lλ ¼
P

σl
λ
σZσ, which are the global conserved quantities

of the closed system: dt
R
V drLλ ¼ 0. For this reason, lλ

σ are
called conservation laws. Physically, they identify parts of
molecules called moieties exchanged between species [39].
When the system is opened by chemostatting, lλ

σ differ-
entiate into the lλu

σ ’s that are left null vectors of the
submatrix of internal species Sx

ρ and the lλb
σ ’s that are

not, namely,

X
x

lλu
x Sx

ρ ¼ 0;
X
x

lλb
x Sx

ρ ≠ 0: ð8Þ

Accordingly, the unbroken components Lλu ¼
P

σl
λu
σ Zσ

remain global conserved quantities of the system,
dt
R
V drLλu ¼ 0, while the broken ones Lλb ¼

P
σl

λb
σ Zσ

change over time, dt
R
V drLλb ¼

P
yl

λb
y
R
V drIy ≠ 0.

In light of that, the equilibrium condition
P

σS
σ
ρμ

eq
σ ¼ 0

corresponding to null reaction affinities fρ ¼ 0 implies that
μeqσ is a linear combination of the conservation laws lλ

σ.
This entails

R
V dr

P
σμ

eq
σ ∂tZσ ¼ 0, which yields, in turn, the

decomposition (3) when time integrating along a relaxation
dynamics that leads from Zσ to Zeq

σ [40].
Moreover, the conservation laws are the passkey to

construct the correct nonequilibrium thermodynamic
potential for open systems. For the latter, an additional
term appears when taking the time derivative of G due to
the external current in Eq. (1),

_Wchem ≔
Z
V
dr

X
y

μyðrÞIyðrÞ; ð9Þ

which defines the chemical work performed by the chemo-
stats. The second law (5) thus attains the new form

_Wchem − dtG ¼ _Σ ≥ 0; ð10Þ

where the EPR _Σ is still given by the two contributions
of Eq. (6) even for Iσ ≠ 0. Consequently, G is no longer
minimized due to the break of conservations laws.
Similar to equilibrium thermodynamics when passing from
canonical to grand canonical ensembles, one needs to
transform the free-energy G subtracting the energetic
contributions of matter exchanged with the reservoirs
[41]. This amounts to the moieties of the broken compo-
nents Myp ≔

P
λb
lλb
yp

−1 R drLλbðrÞ entering those chemo-
stats yp that break all conservation laws, times the reference
values of their chemical potential μrefyp (which simplifies to
μyp for homogeneous chemostats). The so-obtained semi-
grand Gibbs free energy

G ≔ G −
X
yp

μrefyp Myp ð11Þ

encodes CN-specific topological and spatial features thanks
to the freedom in the choice of yp and μrefyp . This allows one
to split the EPR

_Wdriv þ _Wnc − dtG ¼ _Σ; ð12Þ

in terms of the driving and the nonconservative chemical
work rate, respectively,

_Wdriv ≔ −
X
yp

dtμrefyp Myp; _Wnc ≔
X
y

Z
V
drIyF y: ð13Þ

The former results from time-dependent manipulations
of the reference chemostats yp, while the latter gives the
cost of sustaining chemical flows by means of the forces
F yðrÞ ¼ μyðrÞ −

P
yp μ

ref
yp

P
λb
lλb
yp

−1lλb
y measured with

respect to the reference chemical potentials μrefyp [40].
Equation (12) is a major result of this Letter and can be
verified by direct substitution. It quantifies exactly the
energy needed to manipulate, sustain, and create chemical
patterns. In the absence of driving (dtμrefyp ¼ 0) and non-

conservative forcing (F y¼0), it simplifies to dtG¼− _Σ≤0,
which proves that the CN, despite being open, relaxes to
equilibrium by minimizing the free energy G. Moreover, for
a generic open CN, the decomposition of G corresponding
to Eq. (3), i.e., G − Geq ¼ LðZσkZeq

σ Þ ≥ 0, and a time
integral between two nonequilibrium states connected
by an arbitrary manipulation turn Eq. (12) into a non-
equilibrium Landauer principle [36] for RDS,

FIG. 1. Sketch of two patterns with equal relative entropy. Any
transformation ϕðrÞ → ϕ0ðrÞ ¼ ϕðr0Þ with j∂r=∂r0j ¼ 1 corre-
sponding to a simple rearrangement of the local concentrations
leaves LðZjZeqÞ unchanged. This is rooted in the lack of
interactions between chemicals at the scale of the RDS.
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Wdriv þWnc − ΔGeq ≥ ΔLðZσkZeq
σ Þ: ð14Þ

The latter states that the dissipative work spent to
manipulate the CN is bounded by the variation in relative
entropy between the boundary states and their respective
equilibria attained by stopping the driving and zeroing the
forcing.
Turing pattern in the Brusselator model.—As first

proposed by Turing in his seminal paper [42], RDSs

undergo a spatial symmetry breaking leading to a stationary
pattern when at least two chemical species react nonlinearly
and their diffusivities differ substantially. A minimal
system that captures these essential features is the
Brusselator model [43] in one spatial dimension. Here,
the concentrations of two chemical species, an activator
ZX1

¼ x1ðr; tÞ and an inhibitor ZX2
¼ x2ðr; tÞ, evolve in

time and space r ∈ ½0; l� according to the RDS (1) for the
chemical equations in Fig. 2, namely,

∂t

�
x1
x2

�
¼

�
k1y1 − k−1x1 − k2y2x1 þ k−2y3x2 þ k3x21x2 − k−3x31 − k4x1 þ k−4y4 þDx1∂2

rx1;

k2y2x1 − k−2y3x2 − k3x21x2 þ k−3x31 þDx2∂2
rx2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼J ðx1;x2Þ

: ð15Þ

The y1, y2, y3, and y4 are the homogeneous concen-
trations of the chemostatted species, and the diffusivities
satisfy the Turing condition Dx1 ≪ Dx2 . Equation (15)
admits a homogeneous stationary solution ðxh1; xh2ÞT that
becomes unstable for y2 ≥ yc2 so that a sinusoidal pattern
with wave number qc and amplitude proportional to the (in
general complex) function Aðr; tÞ starts developing around
the space-averaged concentrations x̄ðtÞ [35]:
�
x1ðr; tÞ
x2ðr; tÞ

�
¼

�
x̄1ðtÞ
x̄2ðtÞ

�
þ
�

1

ux2

�
½Aðr; tÞeiqcr þ c:c:�:

ð16Þ

The critical values yc2 and qc are determined by the
condition of marginal stability of the homogeneous
state: They are the smaller values for which the matrix
∂xJ ðxh1; xh2Þ (evolving linearized perturbations) acquires a
zero eigenvalue, the corresponding eigenvector being
ð1; ux2ÞT. Near the onset of instability, one can treat
ϵ ¼ ðy2 − yc2Þ=yc2 ≪ 1 as a small parameter and carry out
a perturbation expansion in powers of ϵ. This leads to the
amplitude equation for Aðr; tÞ [44],

τ∂tA ¼ ϵA − αjAj2Aþ ξ∂2
rA; ð17Þ

which describes an exponential growth from an initial small
perturbation Aðr; 0Þ ≃ 0 followed by a late-time saturation
due to the nonlinear terms in Eq. (15). Amplitude equations
provide a general quantitative description of pattern for-
mation in several systems near the onset of instability [45],
irrespective of the details of the underlying physical process
that is subsumed into the effective coefficients τ, α, and ξ.
Since Eq. (17) can be seen as a gradient flow in a complex
Ginzburg-Landau potential involving a bifurcation as ϵ
turns positive, pattern formation is usually considered a
dynamical phase transition [46]. Here, using an analytical

approximate solution to Eq. (15) valid for ϵ ≪ 1, we show
that the phenomenon is, in fact, a genuine thermodynamic
phase transition identified by the appearance of a kink
singularity at yc2 in the nonequilibrium free energy Gðy2Þ.
The semigrand canonical free energy of Fig. 2 is calculated
[40] taking the stationary stable solution corresponding to a
given value of y2, i.e., the homogenous one for y2 ≤ yc2 and
the patterned one for y2 > yc2, namely,

�
xp1 ðrÞ
xp2 ðrÞ

�
∼
�

1

ux2

� ffiffiffi
ϵ

α

r
2 cosðqcrÞ: ð18Þ

FIG. 2. Nonequilibrium semigrand Gibbs free energy G for the
Brusselator model as a function of the chemical potential of the
chemostatted species ZY2

obtained by the analytic stationary
solution of the amplitude equation. To define G, we choose y1 and
y2 as the reference chemostats breaking the two components
L1 ¼ x1 þ x2 þ y1 þ y4 and L2 ¼ y2 þ y3. The dotted line rep-
resents the free energy G in the unstable homogeneous system
before the pattern growth. Symbols (⋆) result from numerical
integration of Eq. (15). Inset: The derivative ∂G=∂μY2

displays a
discontinuity at yc2 ≃ 2.66.
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The physical meaning of the kink at y2 ¼ yc2 is best
understood noticing that the quantity ∂G=∂μY2

¼
_Wdriv=dtμY2

is the driving work upon a quasistatic
manipulation of the chemical potential μY2

. In particular,
for y2 > yc2 it represents the minimum work needed to
vary the wave number qc of the Turing pattern (18).
Interestingly, the total EPR shows no singularity at the
transition (cf. Fig. 3): Moving across yc2, the EPR of
reaction _Σrct decreases with respect to the homogeneous
state value _Σh, while a nonzero EPR of diffusion appears,
their sum being continuous. This is different from what
has been observed in some previous studies of non-
equilibrium phase transition [27–31].
Conclusion.—We presented the nonequilibrium thermo-

dynamics of RDSs and exemplified the theory with the
application to the Brusselator model. We went beyond
the conventional treatment of classical nonequilibrium
thermodynamics [47] in two respects: avoiding to linear-
ize the chemistry, i.e., to oversimplify reaction affinities to
currents times Onsager coefficients; explicitly building
thermodynamic potentials that act as Lyapunov functions
in the relaxation to equilibrium provide minimum work
principles and reveal the existence of nonequilibrium
phase transitions. As demonstrated by the paradigmatic
case of the Brusselator model, the framework can be
directly applied to quantify the energy cost of pattern
manipulations in complex biochemical systems [48–50]
and paves the way to study information transmission
in signal transduction [51], quorum sensing [52], and
chemotaxis [53].
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