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Exact fractals of nonlinear waves that rely on strong dispersion and nonlinearity and arise spontaneously
out of magnetic media were observed for the first time. The experiments make use of a microwave to excite
a spin wave in a quasi-one-dimensional magnonic crystal. When the power of the input microwave (Pin) is
low, the output signal has a power-frequency spectrum that consists of a single peak. When Pin is increased
to a certain level, new side modes are generated through modulational instability, resulting in a comblike
frequency spectrum. With a further increase in Pin, each peak in the frequency comb can evolve into its own
finer comb through the modulational instability. As Pin is increased further, one can observe yet another set
of finer frequency combs. Such a frequency-domain fractal manifests itself as multiple layers of amplitude
modulation in the time-domain signal.
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A fractal is a shape made of parts each of which is similar
to the whole in some way. One can group fractals into the
following two main categories: (i) exact fractals (or regular
fractals) in which the same feature replicates itself on
successively smaller scales and (ii) statistical fractals (or
random fractals) that display statistically similar features
[1–3]. Statistical fractals have been observed in a ratherwide
variety of physical systems, ranging frommaterial structures
to lungs in human bodies and stock price fluctuations. In
stark contrast, exact fractals are relatively rare in nature,
though they can be very easily constructed by mathematical
models. Examples of exact fractals include optical fractals
formed using self-similar structures [4,5].
Despite the above facts, exact fractals have been found in

nonlinear dynamics, which is rather surprising in view of
the strong sensitivity of nonlinear systems. They are space-
domain soliton fractals, demonstrated numerically, and
time-domain soliton fractals, observed experimentally.
The realization of the first one relied on the use of a
one-dimensional (1D) nonlinear waveguide that consists of
different sections, each with a larger dispersion coefficient
D than the prior section [6,7]. As a soliton in the first
section enters the next section, it experiences an abrupt
increase in D and thereby breaks up into several smaller
solitons or daughter solitons. When the daughter solitons
enter the next section, each of them undergoes another
breakup and produces even smaller solitons or grand-
daughter solitons. Thus, successive changes in D create
soliton fractals along the waveguide.
The demonstration of the time-domain soliton fractals

made use of a feedback ring that consisted of a 1D nonlinear
media, and an amplifier that amplified the output signal from
the media and then fed it back to the input of the media [8].

With an appropriate amplification, a single soliton is self-
generated in the ring; as the soliton circulates in the ring, its
amplitude varies in a fractal manner, yielding a time-domain
fractal. In this case, the amplifier ensures sufficient non-
linearity needed to maintain the soliton, while the periodic
feedback modifies the wave dispersion to enable the fractal
dynamics.
This Letter reports on the observation of a new type of

exact fractals in nonlinear dynamics that, in contrast to the
space- and time-domain soliton fractals, form spontaneously
out of the constituentmedia, without being forced into being,
and do not involve solitons. To make an analogy, there is a
strong difference between spontaneous symmetry breaking,
integral to the theory of phase transitions, and forcing
symmetry breaking. The observation uses nonlinear media
in which a spatial periodic potential is introduced to create
strong dispersion that facilitates the formation of a fractal.
The experiments utilize a quasi-1D magnonic crystal [9–17]
that consists of a long and narrowmagnetic Y3Fe5O12 (YIG)
film strip with periodic transversal lines etched into the film.
This medium supports the propagation of spin waves. The
etched lines create a periodic potential for spinwaves, and the
latter leads to significant modification to the spin-wave
dispersion curve at certain wave numbers associated with
the dimensions of the periodic lines [10,11]. Upon the
excitation of a continuous spin wave in one end of the
media, the spin wave propagates to the other end, resulting in
an output signal that manifests itself as a single peak in the
power-frequency spectrum. With an increase in the input
power Pin, the initial peak (or the mother) can produce
additional side peaks (or the daughters) in the frequency
range with strong dispersion through modulational insta-
bility (MI) [1,18–20], resulting in a comblike frequency
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spectrum. As Pin is further increased, each peak in the comb
evolves into its own, finer frequency comb (granddaughters),
also through the MI. Such frequency fractals, which are
illustrated in Fig. 1,manifest themselves asmultiple layers of
amplitude modulation in the time-domain signal.
Three important points should be highlighted. First, the

new fractals in thiswork are fundamentally different from the
previously demonstrated soliton fractals. On the one hand,
those fractals are for solitons, which involve a fine balance
between the dispersion-induced pulse broadening and non-
linearity-caused self-narrowing [6–8], whereas the new
fractals do not require such a balance. In this aspect, this
work indicates that exact fractals in nonlinear systems do not
have to involve solitons. On the other hand, the new fractal
relies on a completely different approach to realize the
conditions needed for fractal formation–it makes use of
spatial periodic potentials to achieve strong dispersion
required by fractal generation, whereas those soliton fractals
use successively increased dispersion and periodic feedback,
respectively, to interrupt soliton dynamics and realize frac-
tals. Thus, the new fractals are spontaneous, not forced.
Second, the approach in this work is of a general nature and
can be applied to achieve similar fractals in other nonlinear
systems, including electromagnetic transmission lines, opti-
cal fibers, and water waves. Finally, in addition to advancing
the field of fractals, the results also help interpret various
nonlinear effects inmagnonic crystals, such as instability and
nonlinear damping [15,17].
The experimental configuration is sketched in Fig. 2(a).

The experiments made use of a quasi-1D magnonic crystal
that consisted of a 10-mm-long, 2.5-mm-wide, 10.3-μm-
thick YIG film strip with 12 lines etched into the film. Each
etched line is 50 μmwide and 3.3 μm deep, and the spacing
between the lines is 400 μm. Backward volume spin
waves [21,22] are excited by placing a microstrip
line on one end of the YIG strip and feeding it with
microwaves, and are detected by a second microstrip line
placed on the other end of the YIG strip. The separation of
the twomicrostrip lines is about 5.5mm. Themagnetic field,
indicated by the red arrow, is kept constant at 1175 Oe.
Figure 2(b) shows the transmission profile and frequency (f)

vs wave-number (k) dispersion curve obtained from the
transmission coefficient measurements on the magnonic
crystal. The strong dips in the transmission profile and the
corresponding jumps in the dispersion curve represent
unique characteristics of the magnonic crystal [10,11,17]
that result from the periodically etched lines.
The data in Fig. 2(b) were measured with a relatively low

input power (Pin ¼ 0.7 mW) over a relatively wide f
range using a vector network analyzer. In contrast, Fig. 3
presents the data measured at a significantly higher power
(Pin ¼ 7 W) over a much narrower f range which are both
relevant to the fractal measurements described later. The
dispersion data, shown by the dots in Figs. 3(c) and 3(d), were
interpolated to produce dispersioncurves, shownby lines, and
the latter was used to numerically determine the dispersion
coefficient D ¼ d2ð2πfÞ=dk2 presented in Figs. 3(e) and
3(f). The data in Fig. 3 clearly show that, as one sweeps f
across a transmission dip, the dispersion coefficient D can
become substantially large and can even flip its sign. To be
more specific, jDj is about 103 cm2=ðrad sÞ in the off-dip
region,which is close to typical values in continuousYIG thin
films [22], but can be 7 orders of magnitude larger in the
transmission dip. It is this strong dispersion that enables the
formation of the fractals presented below.
Figure 4 shows four power-frequency spectra measured

at different Pin, as indicated, using a spectrum analyzer that
demonstrates the development of the spin-wave fractal. At
Pin ¼ 0.7 mW, the spectrum consists of only one peak, as
shown in Fig. 4(a), at the frequency that is exactly equal to
the input frequency. This peak corresponds to the initiator
or the mother shown in Fig. 1. As Pin is increased to 7 W,
several new side peaks are generated through the MI
[1,18–20], and the initial single-peak spectrum evolves

FIG. 1. Illustration of the development of a frequency fractal
with an increase in the input power (P1 < P2 < P3 < P4).

(a)

(b)

FIG. 2. (a) Experimental configuration. (b) Transmission pro-
file (left) and frequency f vs wave-number k dispersion curve
(right) measured with a YIG-based 1D magnonic crystal for
Pin ¼ 0.7 mW.
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into a frequency comb, as shown in Fig. 4(b). The comb
spectrum corresponds to the generator in Fig. 1, and the
new peaks can be termed as daughter modes. With a further
increase in Pin, each peak in the comb develops its own,
finer comb (granddaughters), as shown in Fig. 4(c), also
through the MI. As Pin is increased further, each grand-
daughter generates several great-granddaughters, as shown
in Fig. 4(d). The spectra in Figs. 4(c) and 4(d) correspond to
prefractal 1 and prefractal 2, respectively.

The time-domain signals, measured by a fast oscillo-
scope, that correspond to the spectra in Figs. 4(a)–4(c) are
presented in Figs. 5(a)–5(c), respectively. One can see that,
with an increase in Pin from 0.7 mW to 7 W, the originally
constant envelope of the time-domain signal breaks up into
a periodic modulation with a period of ∼2.0 μs which is the
exact reciprocal of the frequency spacing of the comb
spectrum in Fig. 4(b). As Pin is further increased to 14 W, a
secondary modulation with a much longer period appears
on the top of the first modulation. The period of this
modulation is ∼20 μs which is the reciprocal of the spacing
of the daughter combs in Fig. 4(c).
The physical process that underlies the abovementioned

MI is four-wave interaction [1,19], and in magnetic
materials such an interaction is often termed as four-
magnon scattering [23,24]. The process satisfies the energy
conservation law 2ω0 ¼ ω1 þ ω2, where ω0 and ω1;2 are
the frequencies of the initial mode and the new side modes,
respectively. When sufficiently strong, the side mode (ω1 or
ω2) can interact with the initial mode (ω0) to produce
additional side modes through the four-wave interaction,
resulting in an overall comblike spectrum. As the con-
servation law can be rewritten as ω2 − ω0 ¼ ω0 − ω1, one
can expect the formation of a uniform comb that has an
equal frequency spacingΔω. Indeed, all the combs in Fig. 4
are equally spaced. The spacing Δω generally scales with
1=

ffiffiffiffiffiffiffijDjp

[1], hence the fractal appears in the transmission
dip region only. In other words, the significantly enhanced
dispersion in the transmission dip [see Figs. 3(e) and 3(f)]
enables the generation of the modes with small Δω and
thereby facilitates the formation of new, finer frequency
combs. The MI rate, namely, the rate of the instability
growth [1], generally scales with the square of the wave
amplitude juj2. Because the spin-wave amplitude increases
with Pin, this explains why the fractal develops or evolves
to higher levels only at high Pin.
Several notes should be made about the fractal

data shown in Figs. 4 and 5. First, the granddaughter

(a) (b)

(c) (d)

(e) (f)

FIG. 3. The first and second rows show the transmission profile
and the frequency vs wave-number (k) dispersion curve, respec-
tively, measured with a YIG-based 1D magnonic crystal for
Pin ¼ 7 W. The third row shows the dispersion coefficients (D)
calculated based on the dispersion curves in the second row. The
right column shows the same data as in the left column but over a
much narrower frequency range.

(a) (b) (d)(c)

FIG. 4. Power-frequency spectra measured at different Pin, as indicated, demonstrating fractal development. The diagrams in the
middle and top rows share the same frequency scale indicated in the left-most diagram in each row. The vertical bars in the top-row
diagrams serve as visual guides to indicate the positions of the frequency peaks.
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and great-granddaughter combs are presented only for
several selected daughter modes in Fig. 4, but they in fact
also exist for other daughter modes. Second, the mother
mode has less-developed granddaughter and great-grand-
daughter combs than the daughter modes. This is probably
because the frequency of the mother mode is closer to the
center of the transmission dip where D may have a
relatively small value, as shown in Fig. 3(f). Third, the
Δω=2π values for the main combs in Figs. 4(b)–4(d) are
510, 500, and 495 kHz, respectively. The slight decrease of
Δω=2π with increasing Pin is consistent with the facts that
one usually has Δω ∝ juj [1], while the peak intensity of
the mother mode slightly decreases with increasing Pin
because of the redistribution of energy to new side modes.
Fourth, the great-granddaughter modes in Fig. 4(d) would
be more visible if the diagrams are enlarged.
Finally, it should be noted that no fractals beyond

prefractal 2 were observed in the frequency domain and
only two layers of modulation were measured in the time
domain. The main reasons for this include instrumenta-
tional limitation (limited sensitivities of the spectrum
analyzer and the oscilloscope) and limited nonlinearity
due to various sources of damping (e.g., two-magnon
scattering) and thermal issues arising at very high Pin.
Future work that uses better instrumentation and stronger
nonlinearity to demonstrate fractals of more layers is of
great interest. It should also be noted that this work involves
a constant field along the sample length direction, and a
change in the field direction may lead to the absence of the
above-presented fractals because both the dispersion and
nonlinearity properties of spin waves strongly depend on
the equilibrium direction of the magnetization.
In summary, this work demonstrates experimentally the

development of an exact fractal for nonlinear spin waves in
a quasi-1D magnonic crystal. The fractal exists in the
frequency regions where the dispersion is significantly
enhanced due to a spatially periodic potential and is
generated through the four-wave interaction. The fractal
manifests itself as three layers of comblike spectra in the
frequency domain and two layers of amplitude modulation

in the time domain. The new fractal fundamentally differs
from the fractals found previously in nonlinear systems; it
arises spontaneously out of the fundamental magnonic
crystal media, in contrast to previous approaches based on
successive forcing of emergent structures, namely, solitons.
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