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We use the density matrix renormalization group method to calculate several energy eigenvalues of the
frustrated S ¼ 1=2 square-lattice J1 − J2 Heisenberg model on 2L × L cylinders with L ≤ 10. We identify
excited-level crossings versus the coupling ratio g ¼ J2=J1 and study their drifts with the system size L.
The lowest singlet-triplet and singlet-quintuplet crossings converge rapidly (with corrections ∝ L−2) to
different g values, and we argue that these correspond to ground-state transitions between the Néel
antiferromagnet and a gapless spin liquid, at gc1 ≈ 0.46, and between the spin liquid and a valence-bond
solid at gc2 ≈ 0.52. Previous studies of order parameters were not able to positively discriminate between
an extended spin liquid phase and a critical point. We expect level-crossing analysis to be a generically
powerful tool in density matrix renormalization group studies of quantum phase transitions.
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The spin-1=2 frustrated J1-J2 Heisenberg model on the
two-dimensional (2D) square lattice (where J1 and J2 are
the strengths of the first and second neighbor couplings
Si · Sj, respectively) has been studied and debated since the
early days of the high-Tc cuprate superconductors [1–12].
The initial interest in the system stemmed from the proposal
that frustrated antiferromagnetic (AFM) couplings could
lead to a spin liquid (SL) in which preformed pairs
(resonating valence bonds [13]) become superconducting
upon doping [14,15]. Later, with frustrated quantum
magnets emerging in their own right as an active research
field [16], the J1-J2 model became a prototypical 2D
system for theoretical and computational studies of quan-
tum phase transitions and nonmagnetic states [17–33]. Of
primary interest is the transition from the long-range Néel
AFM ground state [34–36] at small g ¼ J2=J1 to a non-
magnetic state in a window around g ≈ 0.5 (before a stripe
AFM phase at g≳ 0.6). The nature of this quantum phase
transition has remained enigmatic [12,17–21], despite a
large number of calculations with numerical tools of ever
increasing sophistication, e.g., the density matrix renorm-
alization group (DMRG) method [28,29,37,38], tensor-
product states [20,21,30–33], and variational Monte Carlo
calculations [27,39].
The nonmagnetic state may be one with spontaneously

broken lattice symmetries due to formation of a pattern of
singlets (a valence-bond solid, VBS) or a SL. Within these
two classes of potential ground states there are several
different proposals, e.g., a columnar [6,7,12] versus a
plaquette [17,23,29,31] VBS, and gapless [27] or gapped
[28] SLs. The quantum phase transition out of the AFM

state may possibly be an unconventional “deconfined”
transition [40–42], which recently has been investigated
primarily within other models [43–51] hosting direct
AFM-VBS transitions. In the J1-J2 model, some studies
have indicated that the nonmagnetic phase may actually
comprise two different phases, with an entire gapless SL
phase—not just a critical point—existing between the AFM
and VBS states [29,39]. However, because of the small
system sizes accessible, it was not possible to rule out a
direct AFM-VBS transition. We here demonstrate an
intervening gapless SL by locating the AFM-SL and SL-
VBS transitions using a numerical level-spectroscopy
approach, where finite-size transition points are defined
using excited-level crossings. These crossing points exhibit
smooth size dependence and can be more reliably extrapo-
lated to infinite size than the order parameters and gaps
used in past studies.
We use a variant of the DMRG method [37,38,52,53] to

calculate the ground-state energy as well as several of the
lowest singlet, triplet, and quintuplet excited energies. In
the AFM state, the lowest excitation above the singlet
ground state in a finite system with an even number of sites
is a triplet—the lowest state in the Anderson tower of
“quantum rotor” states [34]. If the nonmagnetic ground
state is a degenerate singlet when the system length
L → ∞, as it should be in both a VBS and a topological
(gapped) SL, there must be a crossing of the lowest singlet
and triplet excitation at a point gðLÞ that approaches gc
with increasing L. This is indeed observed at the
dimerization transition of the 1D J1-J2 chain [54–56]
and related systems [57,58], and size extrapolations give
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gc to remarkable precision, even with system sizes only up
to L ≈ 30. A level crossing with the same finite-size
behavior was observed recently also in the 2D J-Q model
[59], which is a Heisenberg model supplemented by four-
spin interactions causing an AFM-VBS transition [43–49],
likely a deconfined quantum-critical point with unusual
scaling properties [50]. It is then natural to investigate level
crossings also in the 2D J1-J2 model.
We will demonstrate a singlet-triplet level crossing in the

J1-J2 model which for 2L × L cylindrical lattices shifts as
gc2 − gc2ðLÞ ∝ L−2 and converges to gc2 ≈ 0.52. We also
observe a singlet-quintuplet level crossing, which con-
verges to a different point, gc1 ≈ 0.46. Given the known
transitions associated with singlet-triplet crossings, and that
a singlet-quintuplet crossing was found at the transition
between the critical and AFM states in a Heisenberg chain
with long-range interactions [56,60], we interpret both gc1
and gc2 as quantum-critical points. For gc1 ≤ g ≤ gc2 the
system appears to be a gapless SL with algebraically
decaying correlations, as in one of the scenarios proposed
in Refs. [29,39] (and previously discussed also in
Ref. [62]). Our value of gc1 is in the middle of the range
g ¼ 0.4 ∼ 0.5 where most recent studies have put the end
of the AFM phase [27–29,39], and gc2 is close to the VBS-
ordering point in Refs. [29,39].
DMRG calculations.—The DMRG method [37] is a

powerful tool for computing the ground state jψ0i of a
many-body Hamiltonian. By solving a Hamiltonian Heff in
a relevant low-entangled subspace of the full Hilbert space,
one can obtain an effective wave function, through which
the most relevant subspace is selected for the next iteration.
A series of such subspace projectors produces the ground
state as a matrix product state (MPS); i.e., the wave
function coefficients are traces of products of local matrices
of chosen size m [38,63].
The lowest excited state jψ1i can also be targeted with

DMRG [53], provided that jψ0i has been precalculated. The
only difference from a ground-state DMRG algorithm is that
one has to maintain the orthogonality condition hψ1jψ0i ¼ 0
at each step. Upon reformulating the Hamiltonian for the
lowest excited state as H1 ¼ H − λ0jψ0ihψ0j, where λ0 is
the eigenvalue of H corresponding to jψ0i, one can write
down the effective Hamiltonian equation in the DMRG
procedure as

½U†
1ðH − λ0jψ0ihψ0jÞU1�U†

1jψ1i ¼ λ1U
†
1jψ1i; ð1Þ

where U1 projects onto the canonical MPS [38] for jψ1i
without the center two sites, as illustrated in Fig. 1, and λ1 is
the eigenvalue for jψ1i. We can therefore define an effective
Hamiltonian H1

eff ≡ U†
1ðH − λ0jψ0ihψ0jÞU1.

Similarly, given that jψ ii for all i < j (λi < λj) have been
precalculated, we observe that one can compute the next
eigenstate j as an MPS with a given number of kept
Schmidt states m using a modified Hamiltonian

Hj ¼ H −
Xj−1

i¼0

λijψ iihψ ij: ð2Þ

Here Hj
effU

†
j jψ ji ¼ λjU

†
j jψ ji as in Eq. (1). In practice such

a DMRG scheme will break down (i.e., unreasonably large
m has to be used) when the eigenstates far from the bottom
of the spectrum begin to violate the area law.
The 2L × L cylinder geometry, with open and periodic

boundaries in the x and y direction, respectively, is known
to be suitable for 2D DMRG calculations [64] and we use
it here for even L up to 10. We employ the DMRG with
either U(1) (the total spin z component Sz is conserved) or
SU(2) symmetry. With U(1) symmetry, we generate up to
ten Sz ¼ 0 states and obtain the total spin S by computing
the expectation value of S2.
An advantage of focusing on the level spectrum is the

well-known fact that the energy converges much faster
with the number m of Schmidt states than other physical
observables, and also as a function of the number of sweeps
in the DMRG procedure. We here apply very stringent
convergence criteria and also extrapolate away the remain-
ing finite-m errors based on calculations for several values
of m up to m ¼ 12000 with U(1) symmetry and m ¼ 5000
with SU(2) symmetry. The DMRG procedures and
extrapolations are further discussed in Supplemental
Material [61].
Results.—Figure 2 shows two singlet gaps and the

lowest triplet and quintuplet gaps versus g in and close
to the nonmagnetic regime. The main graph shows results
for L ¼ 10. One of the singlet gaps decreases rapidly with
increasing g, crossing the other three levels. This is the
lowest singlet excitation starting from g ≈ 0.42, after cross-
ing the other singlet (which has other quantum numbers
related to the lattice symmetries) that is lower in what we
will argue is the AFM phase. The insets of Fig. 2 show
results also for L ¼ 6 and 8 in the region around the level
crossings that we will analyze (the higher gaps for L ¼ 4
are not shown for clarity). Using polynomial fits to the
DMRG data points, we extract crossing points gc1ðLÞ
between the singlet and the quintuplet, as well as gc2ðLÞ
between the singlet and the triplet. The singlet-singlet
crossings taking place close to gc1ðLÞ are discussed in
the Supplemental Material [61]; their size dependence is

FIG. 1. Illustration of the effective Hamiltonian H1
eff in Eq. (1).

Red and gray circles represent the targeted state jψ1i and the
ground state jψ0i, respectively, and the blue squares show the
original Hamiltonian as a matrix-product operator. The hatched
area represents U†

1jψ1i, where U1 projects to the canonical MPS
for jψ1i without the hatched area.
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similar to gc1ðLÞ. For g≳ gc1ðLÞ there are also other levels
in the energy range of Fig. 2, including singlets, but the
S ¼ 0, 1, 2 gaps graphed are the lowest with these spins up
to and beyond the largest g shown.
As L increases the two sets of crossing points drift

toward two different asymptotic values. For the singlet-
triplet crossings, we have considered different extrapolation
procedures with gc2ðLÞ, all of which deliver gc2 ≈ 0.52
when L → ∞. It is natural to test whether the finite-size
correction to gc2 is consistent with the L−2 drift in the
frustrated Heisenberg chain [54–56], a behavior also found
in the 2D J-Q model in Ref. [59]. In Fig. 3(a) we graph the
data versus L−2 along with a line drawn through the L ¼ 8
and L ¼ 10 points, as well as a fitted curve including
a higher-order correction. Although we have only four
points and there are three free parameters, it is not
guaranteed that the fit should match the data as well as
it does. With a leading L−1 correction the best fit is far from
good. Therefore, we take the former fit as evidence that the
asymptotic drift is at least very close to L−2. The fit with
the subleading correction in Fig. 3(a) gives gc2 ¼ 0.519, a
minute change from the straight-line extrapolation. Based
on the differences between the two extrapolations and
roughly estimated errors on the individual crossing points
(which arise from the DMRG extrapolations, as discussed
in Supplemental Material [61]), the final result is
gc2 ¼ 0.519� 0.002.
Plotting the singlet-quintuplet crossing points in the

same graph in Fig. 3(a), the overall behavior is similar
to the singlet-triplet points, but it is clear that they do not
drift as far as to gc2. We find that the L−2 form applies
also here; see the Supplemental Material [61] for
further analysis of the corrections for both gc1 and gc2.
A rough extrapolation by a line drawn through the L ¼ 8

and L ¼ 10 points gives gc1 ≈ 0.465, and when including
a correction, of the same form as in the singlet-triplet
case, the extrapolated value moves only slightly down to
gc1 ≈ 0.463. Based on this analysis we conclude that
gc1 ¼ 0.463� 0.002.
In Fig. 3(b) we analyze the crossing gaps, multiplied by

L in order to make clearly visible the leading behavior and
well-behaved corrections. All gaps close as L−1, i.e., the
dynamic exponent z ¼ 1 at both critical points. We have
also analyzed the gaps in the regime gc1 < g < gc2 (not
shown), and it appears that the lowest S ¼ 0, 1, 2 gaps all
scale as L−1 throughout. This phase should therefore be a
gapless (algebraic) SL, instead of a Z2 SL with nonzero
triplet gap for L → ∞ [28] and singlet gap vanishing
exponentially (due to topological degeneracy).
The point gc2 ≈ 0.52 is higher than almost all previous

results reported for the point beyond which the AFM order
vanishes, but it is close to where recent works have
suggested a transition from a gapless SL into a VBS
[29,39]. If there indeed is a gapless SL intervening between
the AFM and the VBS phases and its lowest excitation is a
triplet (as is the case, e.g., in the critical Heisenberg chain),
then a singlet-triplet crossing is indeed expected at the
SL-VBS transition, since the triplet is gapped and the
ground state is degenerate in the VBS phase.
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FIG. 2. Gaps to the relevant S ¼ 0, 1, and 2 excitations vs g for
L ¼ 10. The insets show the regions of the level crossings of
interest for L ¼ 6, 8, 10 (gaps decreasing with increasing L). The
curves show polynomial fits.
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FIG. 3. (a) The gap-crossing points from Fig. 2 graphed vs L−2.
For the singlet-triplet (red squares) and singlet-quintuplet
(green circles) data sets, the black lines go through the L ¼ 8,
10 points, while the colored curves are of the form gcðLÞ ¼
gcð∞Þ þ aL−2ð1þ bL−ωÞwith gc2ð∞Þ ≈ 0.519, gc1ð∞Þ ≈ 0.463,
and ω ≈ 4. (b) Size-scaled gaps at the singlet-quintuplet (Δc1) and
singlet-triplet (Δc2) crossing points along with fits of the form
LΔðLÞ ¼ cþ dL−σ , where σ1 ≈ 2 and σ2 ≈ 1.5.
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To interpret the singlet-quintuplet crossing at gc1 ≈ 0.46,
we again note that the nature of the low-lying gapless
excitations reflect the properties of the ground state, and a
ground-state transition can be accompanied by rearrange-
ments of levels across sectors or within a sector of fixed
total spin. A singlet-quintuplet crossing is indeed present at
the transition between a critical Heisenberg state (an 1D
algebraic SL) and a long-range AFM state in a spin chain
with long-range unfrustrated interactions and either unfrus-
trated [65] or frustrated [56,60] short-range interactions,
as we discuss further in the Supplemental Material [61].
This analogy, and the fact that gc1 is close to where many
previous works have located the end of the AFM phase (as
we also show below and in Supplemental Material [61]),
provides compelling evidence for the association of the
singlet-quintuplet crossing with the AFM-SL transition.
Furthermore, the S ¼ 2 quantum rotor state in the AFM
state has gap ∝ L−2, while at gc1 it scales as L−1 according
to Fig. 3. Thus, at this point (and for higher g) the level
spectrum is incompatible with AFM order.
We also computed the squared AFM order parameter

(sublattice magnetization per spin) hm2
si in the putative SL

phase, with ms defined on the central L × L part of the
2L × L system (here with L up to 12). Since we mainly
focused on the excited energies, we did not push the
ground-state hm2

si calculations to as large L as in some past
works [28,29]. To complement our own data, we therefore
also use L ¼ 14 results from Ref. [29]. In cases where we
have data for the same parameter values, our results agree
to within 0.2%. We fit the data to power laws with a
correction, hm2

si ¼ bL−αð1 − cL−ωÞ, where acceptable val-
ues of ω span the range ω ≈ 0.2 ∼ 1.5 and the exponent α
changes somewhat when varying ω. In Fig. 4 we show
examples of fits withω ¼ 0.5. We find that α increases with

g, from α ≈ 1.3 at g ¼ 0.46 to α ≈ 1.8 at g ¼ 0.52. We have
also tried to fix α to a common value for all g, but this does
not produce good fits. We therefore agree with previous
claims [29,39] that the exponent depends on g. At g ¼ 0.5,
our result α ≈ 1.7� 0.1 is larger than the value 1.44
reported in Ref. [29], with the difference explained by
the correction used here. The result agrees well with
α ¼ 1.53� 0.09 from variational Monte Carlo calculations
[39], and a similar value was also reported with a projected
entangled pair state ansatz [21]. In the Supplemental
Material [61] we provide further analysis showing that
the AFM order vanishes at the extrapolated level-crossing
point gc1 ≈ 0.46.
Discussion.—Our level-crossing analysis in combination

with results for the sublattice magnetization shows con-
sistently that the AFM phase ends at gc1 ≈ 0.46 and a
gapless SL phase exists between this value and gc2 ≈ 0.52.
In the level-crossing approach the finite-size transition
points are sharply defined and the convergence with system
size is rapid, with corrections vanishing as L−2 (or possibly
L−a with a ≈ 2). Our results in Fig. 3(a) leave little doubt
that the singlet-quintuplet and singlet-triplet crossings
converge to different points, while we would expect
convergence to the same point if there is no SL between
the AFM and VBS phases, as we demonstrate explicitly in
the Supplemental Material [61] in the case of the J-Q
model. The behavior of the spin correlations and the gaps
implies a gapless SL with power-law decaying spin
correlations. In the region 0.52 < g < 0.62, between the
SL and the stripe-AFM, our calculations of excited states
reveal many low-lying singlets, and we have been able to
map them [66] onto the quasidegenerate levels expected for
a columnar [39] VBS state.
The AFM-SL and SL-VBS phase boundaries are in

rough agreement with two recent works discussing a
gapless SL phase followed by a VBS [29,39], and the
lower boundary agrees well with a Lanczos-improved
variational Monte Carlo calculation [27]. Many other past
studies have located the end of the AFM order close to the
same value. A recent exception is an infinite-size tensor
calculation [33] where the AFM order ends close to our gc2
point. However, the infinite-size approach is not unbiased
but depends on details of how the environment tensors
are constructed. The DMRG calculations, here and in
Ref. [29], are unbiased for finite size if the convergence
is checked carefully, and completely exclude AFM order
beyond our gc1 value.
As far as we are aware, the critical singlet-quintuplet

crossing found here (and the singlet-singlet crossing in the
Supplemental Material [61]) has not previously been
discussed in the 2D context. This level crossing has been
considered in 1D [56,60], and in the Supplemental Material
[61] we present additional evidence of its association with
the AFM-SL transition. The physical origin of the level
crossing deserves further study. The detailed information
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FIG. 4. Log-log plot of hm2
si vs L−1. The curves are of the form

hm2
si ¼ bL−αð1 − cL−ωÞ with ω ¼ 0.5. The leading exponent,

with errors estimated by changing ω within its range of good fits,
are α¼1.35�0.05 (g¼0.46), 1.53�0.08 (g¼0.48), 1.69�0.10
(g ¼ 0.50), and 1.78� 0.12 (g ¼ 0.52). The inset shows the
same data on a linear scale. The L ¼ 14 data (open circles) are
from Ref. [29].
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we have obtained on the evolution of the low-energy levels
in 2D should be useful for discriminating between different
field theoretical descriptions of the phase transitions and
the SL phase.
We expect that level crossings are common at 2D

quantum phase transitions, as they are in 1D. Our work
suggests that the best way to use 2D DMRG in studies of
quantum criticality is to first look for and analyze level
crossings to extract critical points, and then study order
parameters (conventional or topological) at this point and in
the phases. In principle the DMRG procedures that we have
employed here can also be extended to more detailed level-
spectroscopy studies [59,67].
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